Publications by authors named "Youngsuk Yi"

Background: A localized non-surgical delivery of allogeneic human chondrocytes (hChonJ) with irradiated genetically modified chondrocytes (hChonJb#7) expressing transforming growth factor-β1 (TGF-β1) showed efficacy in regenerating cartilage tissue in our pre-clinical studies and human Phase I and II clinical trials. These previous observations led us to investigate the molecular mechanisms of the cartilage regeneration.

Methods: Genetically modified TGF-β1preprotein was evaluated by monitoring cell proliferation inhibition activity.

View Article and Find Full Text PDF

Toxic epidermal necrolysis is an unpredictable and severe adverse drug reaction. In toxic epidermal necrolysis, epidermal damage appears to result from keratinocyte apoptosis. This condition is triggered by many factors, principally drugs such as antiepileptic medications, antibiotics (particularly sulfonamide), nonsteroidal anti-inflammatory drugs, allopurinol, and nevirapine.

View Article and Find Full Text PDF

There have been major changes since the incidents of leukemia development in X-SCID patients after the treatments using retroviral gene therapy. Due to the risk of oncogenesis caused by retroviral insertional activation of host genes, most of the efforts focused on the lentiviral therapies. However, a relative clonal dominance was detected in a patient with β-thalassemia Major, two years after the subject received genetically modified hematopoietic stem cells using lentiviral vectors.

View Article and Find Full Text PDF

Background Aims: The aim was to evaluate cartilage regeneration in animal models involving induced knee joint damage. Through cell-mediated gene therapy methods, a cell mixture comprising a 3:1 ratio of genetically unmodified human chondrocytes and transforming growth factor beta-1 (TGF-beta1)-secreting human chondrocytes (TG-C), generated via retroviral transduction, resulted in successful cartilage proliferation in damaged regions.

Methods: Non-clinical toxicology assessments for efficacy, biodistribution and local/systemic toxicity of single intra-articular administration of the cell mixture in mice, rabbits and goats was conducted.

View Article and Find Full Text PDF

Bone morphogenetic protein 2 (BMP2) was selected as a transgene to regenerate osteoporotic bone defects after several BMPs were tested using a bone formation study in nude mice. Human chondrocytes were transduced with a BMP2-containing retroviral vector, and single clones were selected. The cells were characterized over numerous passages for growth and BMP2 expression.

View Article and Find Full Text PDF

The purpose of this study was to investigate the efficacy of cartilage regeneration when using a mixture of transforming growth factor-beta1 (TGF-beta1)-producing human chondrocytes (hChon-TGF-beta1) and primary human chondrocytes (hChon) ("mixed cells"), compared with either hChon-TGF-beta1 or hChon cells alone. Specifically, mixed cells or hChon cells were first injected intradermally into the backs of immune-deficient nude mice to test the feasibility of cartilage formation in vivo. Both the mixed cells and the hChon-TGF-beta1 cells alone induced cartilage formation in nude mice, whereas hChon cells alone did not.

View Article and Find Full Text PDF

One of the most important factors in the production of cartilage is transforming growth factor beta1 (TGF-beta1). To obtain sustained release of TGF-beta1, a cell-mediated gene therapy technique was introduced. We infected chondrocytes with a retroviral vector carrying the TGF-beta1 gene.

View Article and Find Full Text PDF

The recent incidents of leukemia development in X-SCID patients after a successful treatment of the disease with retroviral gene therapy raised concerns regarding the safety of the use of retroviral vectors in clinical gene therapy. In this review, we have tried to re-evaluate the safety issues related to the use of retroviral vectors in human clinical trials and to suggest possible appropriate solutions to the issues. As revealed by the X-SCID incident, oncogenesis caused by retroviral insertional activation of host genes is one of the most prominent risks.

View Article and Find Full Text PDF

Retroviral vectors have been widely used in gene therapy due to their simple genomic structure and high transduction efficiency. We report a construction of Moloney murine sarcoma virus (MoMSV) and Moloney murine leukemia virus (MoMLV) hybrid-based retroviral vectors with significantly improved efficiency of transgene expression after stable incorporation into the host genome. In these vectors, the residual gag gene coding sequence located in the extended region of packaging signal was removed.

View Article and Find Full Text PDF

The regeneration of hyaline articular cartilage by cell-mediated gene therapy using transforming growth factor beta(1) (TGF-beta(1))-producing fibroblasts (NIH 3T3-TGF-beta(1)) has been reported previously. In this study, we investigated whether TGF-beta(1)-producing fibroblasts irradiated with a lethal dose of radiation are still capable of inducing the regeneration of hyaline articular cartilage. NIH 3T3TGF-beta(1) fibroblasts were exposed to doses of 20, 40, or 80 Gy, using a irradiator, and then injected into artificially made partial defects on the femoral condyle of rabbit knee joints.

View Article and Find Full Text PDF