Forestation is widely proposed for carbon dioxide (CO) removal, but its impact on climate through changes to atmospheric composition and surface albedo remains relatively unexplored. We assessed these responses using two Earth system models by comparing a scenario with extensive global forest expansion in suitable regions to other plausible futures. We found that forestation increased aerosol scattering and the greenhouse gases methane and ozone following increased biogenic organic emissions.
View Article and Find Full Text PDFBiogenic volatile organic compounds (BVOCs) affect climate via changes to aerosols, aerosol-cloud interactions (ACI), ozone and methane. BVOCs exhibit dependence on climate (causing a feedback) and land use but there remains uncertainty in their net climatic impact. One factor is the description of BVOC chemistry.
View Article and Find Full Text PDFLong-term exposure to ambient ozone (O) can lead to a series of chronic diseases and associated premature deaths, and thus population-level environmental health studies hanker after the high-resolution surface O concentration database. In response to this demand, we innovatively construct a space-time Bayesian neural network parametric regressor to fuse TOAR historical observations, CMIP6 multimodel simulation ensemble, population distributions, land cover properties, and emission inventories altogether and downscale to 10 km × 10 km spatial resolution with high methodological reliability ( = 0.89-0.
View Article and Find Full Text PDF