Lignocellulosic biomass is a promising renewable feedstock for biodegradable plastics like polyhydroxyalkanoates (PHAs). Cupriavidus necator, a versatile microbial host that synthesizes poly(3-hydroxybutyrate) (PHB), the most abundant type of PHA, has been studied to expand its carbon source utilization. Since C.
View Article and Find Full Text PDFGiven the urgency of climate change, it is imperative to develop innovative technologies for repurposing CO into value-added products to achieve carbon neutrality. Additionally, repurposing nitrogen-source-derived wastewater streams is crucial, focusing on sustainability rather than conventional nitrogen removal in wastewater treatment plants. In this context, microbial protein (MP) production presents a sustainable and promising approach for transforming recovered low-value resources into high-quality feed and food.
View Article and Find Full Text PDFPolyethylene (PE) exhibits high resistance to degradation, contributing to plastic pollution. PE discarded into the environment is photo-oxidized by sunlight and oxygen. In this study, a key enzyme capable of degrading oxidized PE is reported for the first time.
View Article and Find Full Text PDFBackground: Industrial biomanufacturing of value-added products using CO as a carbon source is considered more sustainable, cost-effective and resource-efficient than using common carbohydrate feedstocks. Cupriavidus necator H16 is a representative H-oxidizing lithoautotrophic bacterium that can be utilized to valorize CO into valuable chemicals and has recently gained much attention as a promising platform host for versatile C1-based biomanufacturing. Since this microbial platform is genetically tractable and has a high-flux carbon storage pathway, it has been engineered to produce a variety of valuable compounds from renewable carbon sources.
View Article and Find Full Text PDFAs thermoplastic, nontoxic, and biocompatible polyesters, polyhydroxyalkanoates (PHAs) are considered promising biodegradable plastic candidates for diverse applications. Short-chain-length/medium-chain-length (SCL/MCL) PHA copolymers are flexible and versatile PHAs that are typically produced from fatty acids, which are expensive and toxic. Therefore, to achieve the sustainable biosynthesis of SCL/MCL-PHAs from renewable non-fatty acid carbon sources (e.
View Article and Find Full Text PDFVarious kinds of plastics have been developed over the past century, vastly improving the quality of life. However, the indiscriminate production and irresponsible management of plastics have led to the accumulation of plastic waste, emerging as a pressing environmental concern. To establish a clean and sustainable plastic economy, plastic recycling becomes imperative to mitigate resource depletion and replace non-eco-friendly processes, such as incineration.
View Article and Find Full Text PDFThis study achieved high production of hexanol via gas fermentation using Clostridium carboxidivorans P7 by extracting hexanol from the fermentation broth. The hexanol extraction efficiency and inhibitory effects on C. carboxidivorans P7 of 2-butyl-1-octanol, hexyl hexanoate and oleyl alcohol were examined, and oleyl alcohol was selected as the extraction solvent.
View Article and Find Full Text PDFBackground: A representative hydrogen-oxidizing bacterium Cupriavidus necator H16 has attracted much attention as hosts to recycle carbon dioxide (CO) into a biodegradable polymer, poly(R)-3-hydroxybutyrate (PHB). Although C. necator H16 has been used as a model PHB producer, the PHB production rate from CO is still too low for commercialization.
View Article and Find Full Text PDF, the non-conventional yeast capable of high lipogenesis, is a microbial chassis for producing lipid-based biofuels and chemicals from renewable resources such as lignocellulosic biomass. However, the low tolerance of against furfural, a major inhibitory furan aldehyde derived from the pretreatment processes of lignocellulosic biomass, has restricted the efficient conversion of lignocellulosic hydrolysates. In this study, the furfural tolerance of has been improved by supporting its endogenous detoxification mechanism.
View Article and Find Full Text PDFFront Bioeng Biotechnol
April 2022
Efficient xylose catabolism in engineered enables more economical lignocellulosic biorefinery with improved production yields per unit of biomass. Yet, the product profile of glucose/xylose co-fermenting is mainly limited to bioethanol and a few other chemicals. Here, we introduced an n-butanol-biosynthesis pathway into a glucose/xylose co-fermenting strain (XUSEA) to evaluate its potential on the production of acetyl-CoA derived products.
View Article and Find Full Text PDFHerein, it was unearthed that manganese peroxidase (MnP) from Phanerochaete chrysosporium, a lignin-degrading enzyme, is capable of not only directly decomposing cellulosic components but also boosting cellulase activity. MnP decomposes various cellulosic substrates (carboxymethyl cellulose, cellobiose [CMC], and Avicel®) and produces reducing sugars rather than oxidized sugars such as lactone and ketoaldolase. MnP with Mn in acetate buffer evolves the Mn-acetate complex functioning as a strong oxidant, and the non-specificity of Mn-acetate enables cellulose-decomposition.
View Article and Find Full Text PDFWe previously engineered Enterobacter aerogenesfor glucose and xylose co-utilization and 2,3-butanediol production. Here, strain EMY-22 was further engineered to improve the 2,3-butanediol titer, productivity, and yield by reducing the production of byproducts. To reduce succinate production, the budABC operon and galP gene were overexpressed, which increased 2,3-butanediol production.
View Article and Find Full Text PDFBackground: Lignocellulosic biorefinery offers economical and sustainable production of fuels and chemicals. , a promising industrial host for biorefinery, has been intensively developed to expand its product profile. However, the sequential and slow conversion of xylose into target products remains one of the main challenges for realizing efficient industrial lignocellulosic biorefinery.
View Article and Find Full Text PDFSeveral bioprocessing technologies, such as separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), and consolidated bioprocessing (CBP), have been highlighted to produce bio-based fuels and chemicals from lignocellulosic biomass. Successful CBP, an efficient and economical lignocellulosic biorefinery process compared with other processes, requires microorganisms with sufficient cellulolytic activity and biofuel/chemical-producing ability. Here, we report the complete genome of Paenibacillus sp.
View Article and Find Full Text PDFA brown alga Saccharina japonica and rice straw are attractive feedstock for microbial butyric acid production. However, inefficient fermentation of mannitol (a dominant component in S. japonica) and toxicity of inhibitors in lignocellulosic hydrolysate are limitations.
View Article and Find Full Text PDFRNA-guided genome engineering technologies have been developed for the advanced metabolic engineering of microbial cells to enhance production of value-added chemicals in Corynebacterium glutamicum as an industrial host. In this study, the RNA-guided CRISPR interference (CRISPRi) was applied to rapidly identify of unknown genes for native esterase activity in C. glutamicum.
View Article and Find Full Text PDFThe recalcitrant structure of lignocellulosic biomass is a major barrier in efficient biomass-to-ethanol bioconversion processes. The combination of feedstock engineering via modification in the lignin synthesis pathway of sugarcane and co-fermentation of xylose and glucose with a recombinant xylose utilizing yeast strain produced 148% more ethanol compared to that of the wild type biomass and control strain. The lignin reduced biomass led to a substantially increased release of fermentable sugars (glucose and xylose).
View Article and Find Full Text PDFFor cost-effective lignocellulosic biofuel/chemical production, consolidated bioprocessing (CBP)-enabling microorganisms utilizing cellulose as well as producing biofuel/chemical are required. A novel strain Paenibacillus sp. CAA11 isolated from sediment was found to be not only as a cellulose degrader under both aerobic and strict anaerobic conditions but also as a producer of cellulosic biofuel/chemicals.
View Article and Find Full Text PDFSaccharomyces cerevisiae is used for edible purposes, such as human food or as an animal feed supplement. Fatty acids are also beneficial as feed supplements, but S. cerevisiae produces small amounts of fatty acids.
View Article and Find Full Text PDFDirect conversion of carbon dioxide (CO) to value-added chemicals by engineering of cyanobacteria has received attention as a sustainable strategy in food and chemical industries. Herein, Synechococcus elongatus PCC 7942, a model cyanobacterium, was engineered to produce α-farnesene from CO. As a result of the lack of farnesene synthase (FS) activity in the wild-type cyanobacterium, we metabolically engineered S.
View Article and Find Full Text PDF