Abstract: The SARS-CoV-2 pandemic has presented new challenges to food manufacturers. During the early phase of the pandemic, several large outbreaks of coronavirus disease 2019 (COVID-19) occurred in food manufacturing plants resulting in deaths and economic loss, with approximately 15% of personnel diagnosed as asymptomatic for COVID-19. Spread by asymptomatic and presymptomatic individuals has been implicated in large outbreaks of COVID-19.
View Article and Find Full Text PDFConcerns about the contamination of meat products with undeclared meats and new regulations for the declaration of meat adulterants have established the need for a sensitive test to detect meat adulteration. To address this need, Microbiologique, Inc. has developed ELISA assays that can detect the presence of pork, horse, beef, chicken, turkey, and goat meat adulterants to 0.
View Article and Find Full Text PDFThe Ralstonia solanacearum species complex causes economically significant diseases in many plant families worldwide. Although generally limited to the tropics and subtropics, strains designated race 3 biovar 2 (R3Bv2) cause disease in cooler tropical highlands and temperate regions. R3Bv2 has not become established in North America but, due to concerns that it could devastate the U.
View Article and Find Full Text PDFBackground: Septins, novel cytoskeletal proteins, form rings at the bases of emerging round buds in yeasts and at the bases of emerging elongated hyphal initials in filamentous fungi.
Methodology/principal Findings: When introduced into the yeast Saccharomyces cerevisiae, the septin AspC from the filamentous fungus Aspergillus nidulans induced highly elongated atypical pseudohyphae and spore-producing structures similar to those of hyphal fungi. AspC induced atypical pseudohyphae when S.
As a first step toward identifying novel genes of wall metabolism in filamentous fungi, we have screened a collection of Aspergillus nidulans mutants for strains exhibiting hypersensitivity toward the chitin binding agent Calcofluor White (CFW). This strategy has been used previously to identify cell wall mutants in Saccharomyces cerevisiae. We have identified 10 mutants representing eight loci, designated calA through calH, for Calcofluor hypersensitivity.
View Article and Find Full Text PDFThe cell wall, a mesh of carbohydrates and proteins, shapes and protects the fungal cell. The enzyme responsible for the synthesis of one of the main components of the fungal wall, 1,3-beta-glucan synthase, is targeted by the antifungal caspofungin acetate (CFA). Clinical isolates of Candida albicans and Aspergillus fumigatus are much more sensitive to CFA than clinical isolates of Fusarium species.
View Article and Find Full Text PDFCdc42 is a highly conserved small GTP-binding protein that is involved in regulating morphogenesis in eukaryotes. In this study, we isolated and characterized a highly conserved Cdc42 gene from Colletotrichum trifolii (CtCdc42), a fungal pathogen of alfalfa. CtCdc42 is, at least in part, functionally equivalent to Saccharomyces cerevisiae Cdc42p, since it restores the temperature-sensitive phenotype of a yeast Cdc42p mutant.
View Article and Find Full Text PDFRas is a small monomeric GTP binding protein that transduces signals for growth and differentiation of eukaryotic organisms. Previously, a unique ras gene, designated Ct-ras, was cloned from the alfalfa fungal phytopathogen, Colletotrichum trifolii. Expression of Ct-Ras in mouse fibroblast cells (NIH3T3) demonstrated that Ct-ras is functionally similar to the mammalian ras genes since activating mutations of Ct-ras caused oncogenic phenotypes in nu/nu mice, including tumors.
View Article and Find Full Text PDFColletotrichum trifolii is the causative organism of alfalfa anthracnose. We previously cloned and characterized the small prototypical G protein, Ras, of C. trifolii, which is involved in the signaling pathways that mediate interaction between the pathogen and its host.
View Article and Find Full Text PDF