Publications by authors named "Youngseok Kim"

Non-close-packed crystalline arrays of colloidal particles in an elastic matrix exhibit mechanochromism. However, small interparticle distances often limit the range of reversible color shifts and reduce reflectivity during a blueshift. A straightforward, reproducible strategy using matrix swelling to increase interparticle distance and improve mechanochromic performance is presented.

View Article and Find Full Text PDF

Skin-conformal organic electrochemical transistors (OECTs) have attracted significant attention for real-time physiological signal monitoring and are vital for health diagnostics and treatments. However, mechanical harmonization amid the inherent dynamic nature of the skin surface and the acquisition of intrinsic physiological signals are significant challenges that hinder the integration of the ultimate skin interface. Thus, this study proposes a novel 4-terminal (4-T) vertical Corbino OECT, exhibiting high transconductance (>400 mS) and offering remarkable resilience and operational stability at an extremely low voltage of 10 mV (1.

View Article and Find Full Text PDF

A method for the characterization of organic electrochemical transistors (OECTs) based on small signal analysis is presented that allows to determine the electronic mobility as a function of continuous gate potential using a standard two-channel AC potentiostat. Vector analysis in the frequency domain allows to exclude parasitic components in both ionic and electronic conduction regardless of film thickness, thus resulting in a standard deviation as low as 4%. Besides the electronic mobility, small signal analysis of OECTs also provides information about a wide range of other parameters including the conductance, transconductance, conductivity and volumetric capacitance through a single measurement.

View Article and Find Full Text PDF

Thermoelectric textile devices represent an intriguing avenue for powering wearable electronics. The lack of air-stable n-type polymers has, until now, prevented the development of n-type multifilament yarns, which are needed for textile manufacturing. Here, the thermomechanical properties of the recently reported n-type polymer poly(benzodifurandione) (PBFDO) are explored and its suitability as a yarn coating material is assessed.

View Article and Find Full Text PDF

Through direct arylation polymerization, a series of mixed ion-electron conducting polymers with a low synthetic complexity index is synthesized. A thieno[3,2-]thiophene monomer with oligoether side chains is used in direct arylation polymerization together with a wide range of aryl bromides with varying electronic character from electron-donating thiophene to electron-accepting benzothiadiazole. The obtained polymers are less synthetically complex than other mixed ion-electron conducting polymers due to higher yield, fewer synthetic steps and less toxic reagents.

View Article and Find Full Text PDF

Excessive nutrient supply in agricultural regions has led to various environmental issues, thereby requiring concentrated management owing to its persistent upward trend. Nutrient budgets (NBs), a vital agricultural environmental indicator, are employed for nutrient management in agricultural areas, using data surveyed by administrative agencies. However, the spatial extent of nutrient data for nutrient budgeting is limited by administrative boundaries according to the surveying organization, posing challenges in interpreting spatial patterns at the watershed level.

View Article and Find Full Text PDF

Conjugated polymers exhibit a unique portfolio of electrical and electrochemical behavior, which - paired with the mechanical properties that are typical for macromolecules - make them intriguing candidates for a wide range of application areas from wearable electronics to bioelectronics. However, the degree of oxidation or reduction of the polymer can strongly impact the mechanical response and thus must be considered when designing flexible or stretchable devices. This tutorial review first explores how the chain architecture, processing as well as the resulting nano- and microstructure impact the rheological and mechanical properties.

View Article and Find Full Text PDF

Objectives: This study aimed to investigate the association between multimorbidity, which refers to the presence of two or more chronic diseases, and periodontal disease in Korean adults using national survey data.

Methods: A total of 12,440 Korean adults aged ≥19 years were selected from the seventh Korea National Health and Nutrition Examination Survey (KNHANES). We investigated periodontal disease status based on various variables, including the gender, age, educational level, income level, smoking and alcohol drinking status, frequency of daily toothbrushing, and unmet dental treatment needs.

View Article and Find Full Text PDF

Dengue virus is an enveloped virus with an icosahedral assembly of envelope proteins (E). The E proteins are arranged as a head-to-tail homodimer, and domain III (EDIII) is placed at the edge of the dimer, converging to a pentamer interface. For a structure-based approach, cholera toxin B (CTB) was harnessed as a structural scaffold for the five-fold symmetry of EDIII.

View Article and Find Full Text PDF

In this study, accelerated chloride diffusion tests are performed on ordinary Portland cement (OPC), ground granulated blast furnace slag (GGBFS), and fly ash (FA) concretes aged 4-6 years. Passed charge is evaluated according to ASTM-C-1202 for 12 mixtures, considering water-binder (W/B) ratios (0.37, 0.

View Article and Find Full Text PDF

Background: Continuous exposure of the skin to ultraviolet B (UVB) rays can cause inflammation and photodamage. In previous studies, we observed that the upregulation of nc886, a noncoding RNA (ncRNA), can alleviate UVB-induced inflammation through suppression of the protein kinase RNA (PKR) pathway. We aim to investigate the effect of fermented black ginseng extract (FBGE), which has been shown to increase the expression of nc886, on UVB-induced inflammation in keratinocytes.

View Article and Find Full Text PDF

Photonic crystals with mechanochromic properties are currently under intensive study to provide intuitive colorimetric detection of strains for various applications. However, the sensitivity of color change to strain is intrinsically limited, as the degree of deformation determines the wavelength shift. To overcome this limitation, auxetic photonic patterns that exhibit ultra-sensitive mechanochromism are designed.

View Article and Find Full Text PDF

Quantum computing promises to offer substantial speed-ups over its classical counterpart for certain problems. However, the greatest impediment to realizing its full potential is noise that is inherent to these systems. The widely accepted solution to this challenge is the implementation of fault-tolerant quantum circuits, which is out of reach for current processors.

View Article and Find Full Text PDF

Conjugated polymers with oligoether side chains are promising mixed ionic-electronic conductors, but they tend to feature a low glass transition temperature and hence a low elastic modulus, which prevents their use if mechanical robust materials are required. Carboxymethylated cellulose nanofibrils (CNF) are found to be a suitable reinforcing agent for a soft polythiophene with tetraethylene glycol side chains. Dry nanocomposites feature a Young's modulus of more than 400 MPa, which reversibly decreases to 10 MPa or less upon passive swelling through water uptake.

View Article and Find Full Text PDF

Quantum error correction offers a promising path for performing high fidelity quantum computations. Although fully fault-tolerant executions of algorithms remain unrealized, recent improvements in control electronics and quantum hardware enable increasingly advanced demonstrations of the necessary operations for error correction. Here, we perform quantum error correction on superconducting qubits connected in a heavy-hexagon lattice.

View Article and Find Full Text PDF

Cu(II) ions are one of the essential mineral elements in the human body, but can pose a substantial health risk to people exposed to high concentrations of Cu(II) ions over a long period. Therefore, the ability to detect Cu(II) ions in drinking water is important. In this study, a novel colorimetric sensing probe for the easy and onsite detection of Cu(II) ions in drinking water was developed.

View Article and Find Full Text PDF

Background: This aim of this study was to develop an objective tool for rating submental fat applied to Koreans.

Methods: The study was conducted between April 2019 and October 2019. A total of 92 subjects were enrolled in the study.

View Article and Find Full Text PDF

For the colloidal nanophotonic structures, a transmission electron microscope (TEM) grid has been widely used as a substrate of dark-field microscopy because a nanometer-scale feature can be effectively determined by TEM imaging following dark-field microscopic studies. However, an optically lossy carbon layer has been implemented in conventional TEM grids. A broadband scattering from the edges of the TEM grid further restricted an accessible signal-to-noise ratio.

View Article and Find Full Text PDF

Natural products and their derivatives historically represent alternatives to conventional synthetic molecules for pharmacotherapy, ranging from cancer chemotherapeutics to cosmetic ingredients that exert anti-aging activities. Cellular senescence is considered a main driver of skin aging, yet natural products that target skin senescence in a specific manner are not thoroughly explored. Here, we performed a focused compound screen to identify natural products that exert anti-senescence effects.

View Article and Find Full Text PDF

A mechanochromic strain sensor that is capable of distinguishing the orientation, the location, and the degree of deformation based on the highly stretchable membrane of main-chain chiral liquid crystalline elastomer (MCLCE) is proposed. The MCLCE film is designed to exhibit uniform and significant color shift upon the small strain by using step-growth polymerization of liquid crystal (LC) oligomer and its phase-stabilization in solvent mesogen. As conformally placed on the bottom elastomer sheet, the MCLCE film shows multimodal, instantaneous color change for sensing arbitrary in-plane deformation, out-of-plane bending, and nonzero Gaussian deformation.

View Article and Find Full Text PDF

Senescent fibroblasts progressively deteriorate the functional properties of skin tissue. Senescent cells secrete senescence-associated secretory phenotype (SASP) factor, which causes the aging of surrounding non-senescent cells and accelerates aging in the individuals. Recent findings suggested the senomorphic targeting of the SASP regulation as a new generation of effective therapeutics.

View Article and Find Full Text PDF

Nanostructured FeO/TiO composite pigments with improved NIR reflectance were prepared by a homogeneous precipitation method using urea and NHOH. The optical and morphological properties of the resulting pigment were investigated by varying the weight ratio of FeO to TiO and the calcination temperature. The resulting composite pigment has a nanostructure in which FeO nanoparticles of 20-30 nm size are well coated on the surface of TiO (∼100 nm) and the reflectance is greatly improved in the wavelength range of 620-1350 nm.

View Article and Find Full Text PDF

In this work, a facile synthetic route for the preparation of high aspect ratio Cu oxide nanowires is reported. The preparation of the Cu oxide nanowires begins with the generation of pure Cu nanoparticles by inert gas condensation (IGC) method, follows by dispersing the obtained nanoparticles in methanol with the aid of ultrasonication. The mixture is stored at different temperature for the transformation from Cu nanoparticle to Cu oxide nanowires.

View Article and Find Full Text PDF

Arbitrarily long quantum computations require quantum memories that can be repeatedly measured without being corrupted. Here, we preserve the state of a quantum memory, notably with the additional use of flagged error events. All error events were extracted using fast, midcircuit measurements and resets of the physical qubits.

View Article and Find Full Text PDF