A main ingredient of Kimchi is Kimchi cabbage, which is soaked in brine to reduce its crispness. Volatile profile of raw Kimchi cabbage (RC) is changed during salting; however, characteristic aroma-active compounds of salted Kimchi cabbage (SC) have not been investigated. The objective of this study was to evaluate changes in aroma characteristics of Kimchi cabbage during salting and fermentation.
View Article and Find Full Text PDFBackground: In the quest for sustainable food ingredients, the present study delves into the potential of a tri-component hydrocolloid blend, comprising gellan gum (GG), soy protein isolate (SPI) and maltodextrin (MD), as a replacement for egg white in meringue production. The research aims to elucidate the intricate physical properties of meringue containing this tri-component structure, focusing on foaming dynamics, rheological behavior and the textural properties of the resulting meringue cookies.
Results: Experiments were conducted with various hydrocolloids (k-carrageenan, GG, and locust bean gum) and GG was identified as optimal for improving foaming capacity and foaming stability.
Ensuring safe high-quality food is an ongoing priority, yet consumers face heightened risk from foodborne pathogens due to extended supply chains and climate change in the food industry. Nanomaterial-based assays are popular and have recently been developed to ensure food safety and high quality. This review discusses strategies for utilizing gold nanoparticles in colorimetric biosensors.
View Article and Find Full Text PDFFreezing extends the shelf-life of food by slowing down the physical and biochemical reactions; however, ice crystal formation can result in irreversible damage to the cell's structure and texture. Supercooling technology has the potential to preserve the original freshness of food without freezing damage. In this study, fresh asparagus was preserved in a supercooled state and its quality changes such as color, weight loss, texture, chlorophyll and anthocyanin content, and enzymatic activities (superoxide dismutase and catalase) were evaluated.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
November 2021
Ensuring consistently high quality and safety is paramount to food producers and consumers alike. Wet chemistry and microbiological methods provide accurate results, but those methods are not conducive to rapid, onsite testing needs. Hence, many efforts have focused on rapid testing for food quality and safety, including the development of various biosensors.
View Article and Find Full Text PDFFreezing has been widely recognized as the most common process for long-term preservation of perishable foods; however, unavoidable damages associated with ice crystal formation lead to unacceptable quality losses during storage. As an alternative, supercooling preservation has a great potential to extend the shelf-life and maintain quality attributes of fresh foods without freezing damage. Investigations for the application of external electric field (EF) and magnetic field (MF) have theorized that EF and MF appear to be able to control ice nucleation by interacting with water molecules in foods and biomaterials; however, many questions remain open in terms of their roles and influences on ice nucleation with little consensus in the literature and a lack of clear understanding of the underlying mechanisms.
View Article and Find Full Text PDFThe use of colorimetric bioassays for protein detection is one of the most interesting diagnostic approaches, but their relatively poor detection limits have been a critical issue. In this study, we developed an efficient colorimetric bioassay based on switchable linkers (SLs) for the detection of prostate-specific antigen (PSA), which is one of the most widely used protein biomarkers for the diagnosis of prostate and breast cancers. SLs can cross-link gold nanoparticles (AuNPs) to generate large-scale aggregates and thereby induce precipitation to achieve visual signal amplification.
View Article and Find Full Text PDFDetection of pathogens present in food and water is essential to help ensure food safety. Among the popular methods for pathogen detection are those based on culture and colony-counting and polymerase chain reaction (PCR). However, the time-consuming nature and/or the need for sophisticated instrumentation of those methods limit their on-site applications.
View Article and Find Full Text PDFUnderstanding the interactions between proteins and nanoparticles (NPs) along with the underlying structural and dynamic information is of utmost importance to exploit nanotechnology for biomedical applications. Upon adsorption onto a NP surface, proteins form a well-organized layer, termed the corona, that dictates the identity of the NP-protein complex and governs its biological pathways. Given its high biological relevance, in-depth molecular investigations and applications of NPs-protein corona complexes are still scarce, especially since different proteins form unique corona patterns, making identification of the biomolecular motifs at the interface critical.
View Article and Find Full Text PDFStudy Design: Neuronal cell-specific gene expression system and neural stem cells (NSCs) were combined for treatment of spinal cord injury (SCI).
Objective: To verify the reproducibility of the neuronal cell-specific therapeutic gene overexpression system, we develop a neuronal cell-specific granulocyte-macrophage colony-stimulating factor expression system (NSE-GMCSF), and then examine the characteristics of GMCSF overexpression and protective effect on neural cells in vitro and vivo.
Summary Of Background Data: The stem cell transplantation is considered a promising therapy for SCI.
Introduction: Induced pluripotent stem cells (iPSCs) have emerged as a promising cell source for immune-compatible cell therapy. Although a variety of somatic cells have been tried for iPSC generation, it is still of great interest to test new cell types, especially those which are hardly obtainable in a normal situation.
Methods: In this study, we generated iPSCs by using the cells originated from intervertebral disc which were removed during a spinal operation after spinal cord injury.
Purpose: Spinal cord injury (SCI) is associated with permanent neurological damage, and treatment thereof with a single modality often does not provide sufficient therapeutic outcomes. Therefore, a strategy that combines two or more techniques might show better therapeutic effects.
Materials And Methods: In this study, we designed a combined treatment strategy based on neural stem cells (NSCs) introduced via a neuronal cell type-inducible transgene expression system (NSE::) controlled by a neuron-specific enolase (NSE) promoter to maximize therapeutic efficiency and neuronal differentiation.
Previously, we determined that vascular endothelial growth factor (VEGF) improves the survival of neural stem cells (NSCs) transplanted into an ischemic environment and effectively enhances angiogenesis. Here, we applied NSCs expressing VEGF (SV-VEGF-NSCs) to treat neuropathic pain. In this study, our goal was to verify the therapeutic effect of SV-VEGF-NSCs by transplanting the cells in a sciatic nerve injury model.
View Article and Find Full Text PDF