Publications by authors named "Youngnam Jin"

Identifying target proteins for bioactive molecules is essential for understanding their mechanisms, developing improved derivatives, and minimizing off-target effects. Despite advances in target identification (target-ID) technologies, significant challenges remain, impeding drug development. Most target-ID methods use cell lysates, but maintaining an intact cellular context is vital for capturing specific drug-protein interactions, such as those with transient protein complexes and membrane-associated proteins.

View Article and Find Full Text PDF
Article Synopsis
  • Neurodegenerative diseases like Alzheimer's and polyglutamine diseases involve misfolded protein accumulation, leading to neuron dysfunction and death, but there's a gap in studies that link molecular changes to functional outcomes.
  • This research utilized models expressing Aβ1-42 and polyglutamine to observe early pathogenic features in specific olfactory neurons, revealing significant odor sensitivity reduction as early as day 1, highlighting cell-type-specific dysfunction.
  • Findings indicate that early indicators of neurodegeneration include decreased calcium signaling and morphological changes in sensory neurons, occurring before visible protein aggregates form, with potential therapeutic implications suggested by the activation of the AMPK pathway.
View Article and Find Full Text PDF

Background: Immunotherapy has revolutionized skin cutaneous melanoma treatment, but response variability due to tumor heterogeneity necessitates robust biomarkers for predicting immunotherapy response.

Methods: We used weighted gene co-expression network analysis (WGCNA), consensus clustering, and 10 machine learning algorithms to develop the immunotherapy-related gene model (ITRGM) signature. Multi-omics analyses included bulk and single-cell RNA sequencing of melanoma patients, mouse bulk RNA sequencing, and pathology sections of melanoma patients.

View Article and Find Full Text PDF
Article Synopsis
  • Translation is the process of synthesizing proteins from mRNA, involving four key stages: initiation, elongation, termination, and ribosome recycling.
  • Precise regulation of translation is important because its disruption can lead to diseases like cancer, and recent studies highlight non-canonical translation mechanisms that use atypical elements for protein synthesis.
  • The review discusses how these non-canonical mechanisms influence cancer-related pathways, opening up new avenues for potential cancer therapies.
View Article and Find Full Text PDF

Cancer cells can induce molecular changes that reshape cellular metabolism, creating specific vulnerabilities for targeted therapeutic interventions. Given the importance of reactive oxygen species (ROS) in tumor development and drug resistance, and the abundance of reduced glutathione (GSH) as the primary cellular antioxidant, we examined an integrated panel of 56 glutathione metabolism-related genes (GMRGs) across diverse cancer types. This analysis revealed a remarkable association between GMRGs and low-grade glioma (LGG) survival.

View Article and Find Full Text PDF

Primordial germ cells (PGCs) are the precursor cells that form during early embryogenesis and later differentiate into oocytes or spermatozoa. Abnormal development of PGCs is frequently a causative factor of infertility and germ cell tumors. However, our understanding of PGC development remains insufficient, and we have few pharmacological tools for manipulating PGC development for biological study or therapy.

View Article and Find Full Text PDF

Primordial germ cells (PGCs) form during early embryogenesis with a supply of maternal mRNAs that contain shorter poly(A) tails. How translation of maternal mRNAs is regulated during PGC development remains elusive. Here we describe a small-molecule screen with zebrafish embryos that identified primordazine, a compound that selectively ablates PGCs.

View Article and Find Full Text PDF

Patients with a germline mutation in von Hippel-Lindau (VHL) develop renal cell cancers and hypervascular tumors of the brain, adrenal glands, and pancreas as well as erythrocytosis. These phenotypes are driven by aberrant expression of HIF2α, which induces expression of genes involved in cell proliferation, angiogenesis, and red blood cell production. Currently, there are no effective treatments available for VHL disease.

View Article and Find Full Text PDF

Virtually all organisms seek to maximize fitness by matching fuel availability with energy expenditure. In vertebrates, glucose homeostasis is central to this process, with glucose levels finely tuned to match changing energy requirements. To discover new pathways regulating glucose levels in vivo, we performed a large-scale chemical screen in live zebrafish and identified the small molecule alexidine as a potent glucose-lowering agent.

View Article and Find Full Text PDF

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor in the defence against oxidative stress. Here we provide evidence that activation of the Nrf2 pathway reduces the levels of phosphorylated tau by induction of an autophagy adaptor protein NDP52 (also known as CALCOCO2) in neurons. The expression of NDP52, which we show has three antioxidant response elements (AREs) in its promoter region, is strongly induced by Nrf2, and its overexpression facilitates clearance of phosphorylated tau in the presence of an autophagy stimulator.

View Article and Find Full Text PDF

Background: Mitochondrial impairment has been implicated in the pathogenesis of Huntington's disease (HD). However, how mutant huntingtin impairs mitochondrial function and thus contributes to HD has not been fully elucidated. In this study, we used striatal cells expressing wild type (STHdhQ7/Q7) or mutant (STHdhQ111/Q111) huntingtin protein, and cortical neurons expressing the exon 1 of the huntingtin protein with physiological or pathological polyglutamine domains, to examine the interrelationship among specific mitochondrial functions.

View Article and Find Full Text PDF

Huntington disease (HD) is an inherited neurodegenerative disease resulting from an abnormal expansion of polyglutamine in huntingtin (Htt). Compromised oxidative stress defense systems have emerged as a contributing factor to the pathogenesis of HD. Indeed activation of the Nrf2 pathway, which plays a prominent role in mediating antioxidant responses, has been considered as a therapeutic strategy for the treatment of HD.

View Article and Find Full Text PDF

Optogenetics is a powerful research tool because it enables high-resolution optical control of neuronal activity. However, current optogenetic approaches are limited to transgenic systems expressing microbial opsins and other exogenous photoreceptors. Here, we identify optovin, a small molecule that enables repeated photoactivation of motor behaviors in wild-type zebrafish and mice.

View Article and Find Full Text PDF

Regulated protein degradation by the proteasome plays an essential role in the enhancement and suppression of signaling pathways in the nervous system. Proteasome-associated factors are pivotal in ensuring appropriate protein degradation, and we have previously demonstrated that alterations in one of these factors, the proteasomal deubiquitinating enzyme ubiquitin-specific protease 14 (Usp14), can lead to proteasome dysfunction and neurological disease. Recent studies in cell culture have shown that Usp14 can also stabilize the expression of over-expressed, disease-associated proteins such as tau and ataxin-3.

View Article and Find Full Text PDF

Organophosphates are a class of highly toxic chemicals that includes many pesticides and chemical weapons. Exposure to organophosphates, either through accidents or acts of terrorism, poses a significant risk to human health and safety. Existing antidotes, in use for over 50 years, have modest efficacy and undesirable toxicities.

View Article and Find Full Text PDF

Impairments in mitochondria and transcription are important factors in the pathogenesis of Huntington disease (HD), a neurodegenerative disease caused by a polyglutamine expansion in the huntingtin protein. This study investigated the effect of different metabolic states and peroxisome proliferator-activated receptor γ (PPARγ) activation on sensitivity to cellular stressors such as H(2)O(2) or thapsigargin in HD. Striatal precursor cells expressing wild type (STHdh(Q7)) or mutant huntingtin (STHdh(Q111)) were prepared in different metabolic conditions (glucose vs.

View Article and Find Full Text PDF

VCP/p97 is a multifunctional AAA+-ATPase involved in vesicle fusion, proteasomal degradation, and autophagy. Reported dysfunctions of these processes in Alzheimer disease (AD), along with the linkage of VCP/p97 to inclusion body myopathy with Paget's disease and frontotemporal dementia (IBMPFD) led us to examine the possible linkage of VCP to the AD-relevant protein, tau. VCP levels were reduced in AD brains, but not in the cerebral cortex of an AD mouse model, suggesting that VCP reduction occurs upstream of tau pathology.

View Article and Find Full Text PDF

Mitochondrial dysfunction is likely a significant contributing factor to Alzheimer disease pathogenesis, and both amyloid peptide (Aβ) and pathological forms of tau may contribute to this impairment. Cleavage of tau at Asp421 occurs early in Alzheimer disease, and Asp421-cleaved tau likely negatively impacts neuronal function. Previously we showed that expression of Asp421-cleaved tau in a neuronal cell model resulted in mitochondrial impairment.

View Article and Find Full Text PDF

Huntington disease (HD) is an inherited neurodegenerative disease caused by an abnormal expansion of the CAG repeat region in the huntingtin (Htt) gene. Although the pathogenic mechanisms by which mutant Htt (mHtt) causes HD have not been fully elucidated, it is becoming increasingly apparent that mHtt can impair mitochondrial function directly, as well as indirectly by dysregulation of transcriptional processes. mHtt causes increased sensitivity to Ca(2+)-induced decreases in state 3 respiration and mitochondrial permeability transition pore (mPTP) opening concurrent with a reduction in mitochondrial Ca(2+) uptake capacity.

View Article and Find Full Text PDF

Excretory-secretory products (ESP) from helminthic parasites may play pivotal roles in the immune regulation in hosts. Previously, we reported that ESP produced from Paragonimus westermani induced morphological activation of microglial cells and markedly stimulated nitric oxide (NO) production via activation of mitogen-activated protein kinases (MAPKs). In the present study, we investigated the role of protein kinase C and protein kinase A in MAPKs-dependent NO production by ESP.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor-gamma (PPARgamma) is a member of the PPAR family of transcription factors. Synthetic PPARgamma agonists are used as oral anti-hyperglycemic drugs for the treatment of non-insulin-dependent diabetes. However, emerging evidence indicates that PPARgamma activators can also prevent or attenuate neurodegeneration.

View Article and Find Full Text PDF

Human nucleolar phosphoprotein p140 (hNopp140) is a nucleolar phosphoprotein that can bind to doxorubicin, an anti-cancer agent. We have examined the interaction between hNopp140 and doxorubicin as well as the folding property of hNopp140. Also, the effects of ATP and phosphorylation on the affinity of hNopp140 to doxorubicin are investigated by affinity dependent co-precipitation and surface plasmon resonance methods.

View Article and Find Full Text PDF

Background: Tissue-invading helminth parasites secrete a large amount of cysteine proteases that may play critical roles in tissue invasion and immune modulation. However, roles of excretory-secretory products (ESP) secreted by Paragonimus westermani in the activation and death of microglial cells in brain are poorly understood.

Objectives: In the present study, we investigated whether ESP could regulate microglial nitric oxide (NO) production and viability.

View Article and Find Full Text PDF

1 The mitochondrial respiratory chain produces reactive oxygen species (ROS) during normal electron transport. Despite producing ROS, mitochondria are vulnerable to oxidative stress. Mitochondrial dysfunction has been associated with many degenerative diseases, making it important to identify compounds that protect mitochondria from ROS-mediated toxicity.

View Article and Find Full Text PDF

Human nucleolar phosphoprotein 140, hNopp140, is one of the most highly phosphorylated mammalian proteins, which is involved in the biogenesis of nucleolus. It regulates the transcription of rDNA and has a tendency to bind to doxorubicin, which is widely used as an anti-cancer drug. The biochemical and biophysical property of hNopp140 has not been reported due to the fact that it is rather difficult to obtain protein in large enough quantity.

View Article and Find Full Text PDF