Publications by authors named "Younglang Lee"

Article Synopsis
  • NEMO is a key protein involved in regulating inflammation and immune responses, and mutations in the IKBKG gene can cause immunodeficiency.
  • In three unrelated boys with distinct IKBKG mutations, researchers identified a new autoinflammatory condition, called NEMO deleted exon 5 autoinflammatory syndrome (NDAS), characterized by a protein variant that alters immune responses.
  • This mutated protein leads to increased NF-κB activation and interferon production in certain immune cells, differing from the typical immune deficiency associated with other IKBKG mutations.
View Article and Find Full Text PDF

Sarcopenia is the age-related loss of muscle mass and function and no pharmacological medication has been approved for its treatment. We established an atrogin-1/MAFbx promoter assay to find drug candidates that inhibit myotube atrophy. Alverine citrate (AC) was identified using high-throughput screening of an existing drug library.

View Article and Find Full Text PDF

Sarcopenia is characterized by decreased skeletal muscle mass and function with age. Aged muscles have altered lipid compositions; however, the role and regulation of lipids are unknown. Here we report that FABP3 is upregulated in aged skeletal muscles, disrupting homeostasis via lipid remodeling.

View Article and Find Full Text PDF

Receptor-induced NF-κB activation is controlled by NEMO, the NF-κB essential modulator. Hypomorphic NEMO mutations result in X-linked ectodermal dysplasia with anhidrosis and immunodeficiency, also referred to as NEMO syndrome. Here we describe a distinct group of patients with NEMO C-terminal deletion (ΔCT-NEMO) mutations.

View Article and Find Full Text PDF

The innate immune response is a host defense mechanism against infection by viruses and bacteria. Type I interferons (IFNα/β) play a crucial role in innate immunity. If not tightly regulated under normal conditions and during immune responses, IFN production can become aberrant, leading to inflammatory and autoimmune diseases.

View Article and Find Full Text PDF

TRIM32, which belongs to the tripartite motif (TRIM) protein family, has the RING finger, B-box, and coiled-coil domain structures common to this protein family, along with an additional NHL domain at the C terminus. TRIM32 reportedly functions as an E3 ligase for actin, a protein inhibitor of activated STAT y (PIASy), dysbindin, and c-Myc, and it has been associated with diseases such as muscular dystrophy and epithelial carcinogenesis. Here, we identify a new substrate of TRIM32 and propose a mechanism through which TRIM32 might regulate apoptosis.

View Article and Find Full Text PDF

Tripartite motif (TRIM) protein TRIM5alpha has been shown to restrict human immunodeficiency virus, type 1 infection in Old World monkey cells at the early post-entry step by poorly understood mechanisms. Currently, the physiological function of TRIM5alpha is not known. In this study, we showed that transiently overexpressed TRIM5alpha causes a morphological change in HEK293T cells.

View Article and Find Full Text PDF