The functional properties of complex oxides, including magnetism and ferroelectricity, are closely linked to subtle structural distortions. Ultrafast optical excitations provide the means to manipulate structural features and ultimately to affect the functional properties of complex oxides with picosecond-scale precision. We report that the lattice expansion of multiferroic BiFeO following above-bandgap optical excitation leads to distortion of the oxygen octahedral rotation (OOR) pattern.
View Article and Find Full Text PDFDynamical control of thermal transport at the nanoscale provides a time-domain strategy for optimizing thermal management in nanoelectronics, magnetic devices, and thermoelectric devices. However, the rate of change available for thermal switches and regulators is limited to millisecond time scales, calling for a faster modulation speed. Here, time-resolved X-ray diffraction measurements and thermal transport modeling reveal an ultrafast modulation of the interfacial thermal conductance of an FeRh/MgO heterostructure as a result of a structural phase transition driven by optical excitation.
View Article and Find Full Text PDFThe interplay between a multitude of electronic, spin, and lattice degrees of freedom underlies the complex phase diagrams of quantum materials. Layer stacking in van der Waals (vdW) heterostructures is responsible for exotic electronic and magnetic properties, which inspires stacking control of two-dimensional magnetism. Beyond the interplay between stacking order and interlayer magnetism, we discover a spin-shear coupling mechanism in which a subtle shear of the atomic layers can have a profound effect on the intralayer magnetic order in a family of vdW antiferromagnets.
View Article and Find Full Text PDFOptical excitation leads to ultrafast stress generation in the prototypical multiferroic BiFeO. The time scales of stress generation are set by the dynamics of the population of excited electronic states and the coupling of the electronic configuration to the structure. X-ray free-electron laser diffraction reveals high-wavevector subpicosecond-time scale stress generation following ultraviolet excitation of a BiFeO thin film.
View Article and Find Full Text PDFSignificancePhase transitions, the changes between states of matter with distinct electronic, magnetic, or structural properties, are at the center of condensed matter physics and underlie valuable technologies. First-order phase transitions are intrinsically heterogeneous. When driven by ultrashort excitation, nanoscale phase regions evolve rapidly, which has posed a significant experimental challenge to characterize.
View Article and Find Full Text PDFOptical excitation perturbs the balance of phenomena selecting the tilt orientation of domain walls within ferroelectric thin films. The high carrier density induced in a low-strain BaTiO_{3} thin film by an above-band-gap ultrafast optical pulse changes the tilt angle that 90° a/c domain walls form with respect to the substrate-film interface. The dynamics of the changes are apparent in time-resolved synchrotron x-ray scattering studies of the domain diffuse scattering.
View Article and Find Full Text PDFThe collective dynamics of topological structures are of interest from both fundamental and applied perspectives. For example, studies of dynamical properties of magnetic vortices and skyrmions have not only deepened our understanding of many-body physics but also offered potential applications in data processing and storage. Topological structures constructed from electrical polarization, rather than electron spin, have recently been realized in ferroelectric superlattices, and these are promising for ultrafast electric-field control of topological orders.
View Article and Find Full Text PDFAbove-band-gap optical illumination of compressively strained BiFeO_{3} induces a transient reversible transformation from a state of coexisting tilted tetragonal-like and rhombohedral-like phases to an untilted tetragonal-like phase. Time-resolved synchrotron x-ray diffraction reveals that the transformation is induced by an ultrafast optically induced lattice expansion that shifts the relative free energies of the tetragonal-like and rhombohedral-like phases. The transformation proceeds at interfaces between regions of the tetragonal-like phase and regions of a mixture of tilted phases, consistent with the motion of a phase boundary.
View Article and Find Full Text PDFMolecular monolayers that can be reconfigured through the use of external stimuli promise to enable the creation of interfaces with precisely selected dynamically adjustable physical and electronic properties with potential impact ranging from electronics to energy storage. Azobenzene-containing molecular monolayers have multiple stable molecular conformations but face a challenging nanoscale problem associated with understanding the basic mechanisms of reconfiguration. Time-resolved X-ray reflectivity studies show that the reconfiguration of a densely packed rhenium-azobenzene monolayer occurs in a period of many seconds.
View Article and Find Full Text PDFQuantum devices formed in high-electron-mobility semiconductor heterostructures provide a route through which quantum mechanical effects can be exploited on length scales accessible to lithography and integrated electronics. The electrostatic definition of quantum dots in semiconductor heterostructure devices intrinsically involves the lithographic fabrication of intricate patterns of metallic electrodes. The formation of metal/semiconductor interfaces, growth processes associated with polycrystalline metallic layers, and differential thermal expansion produce elastic distortion in the active areas of quantum devices.
View Article and Find Full Text PDFThe nanodomain pattern in ferroelectric-dielectric superlattices transforms to a uniform polarization state under above-band-gap optical excitation. X-ray scattering reveals a disappearance of domain diffuse scattering and an expansion of the lattice. The reappearance of the domain pattern occurs over a period of seconds at room temperature, suggesting a transformation mechanism in which charge carriers in long-lived trap states screen the depolarization field.
View Article and Find Full Text PDF