Publications by authors named "Youngjae You"

Photodynamic therapy (PDT) effectively kills cancer cells and initiates immune responses that promote anticancer effects locally and systemically. Primarily developed for local and regional cancers, the potential of PDT for systemic antitumor effects [in situ photo-vaccination (ISPV)] remains underexplored. This study investigates: (1) the comparative effectiveness of paclitaxel (PTX) prodrug [Pc-(L-PTX)] for PDT and site-specific PTX effects versus its pseudo-prodrug [Pc-(NCL-PTX)] for PDT combined with checkpoint inhibitors; (2) mechanisms driving systemic antitumor effects; and (3) the prophylactic impact on preventing cancer recurrence.

View Article and Find Full Text PDF

Protoporphyrin IX (PpIX)-based photodynamic therapy (PDT) has shown limited efficacy in nonmuscle-invasive bladder cancer (NMIBC). To improve PDT efficacy, we developed singlet oxygen-cleavable prodrugs. These prodrugs, when combined with PpIX-PDT, induce cancer cell death through both PDT and drug release mechanisms.

View Article and Find Full Text PDF

It has been 30 years since Photofrin-PDT was approved for the treatment of bladder cancer in Canada. However, Photofrin-PDT failed to gain popularity due to bladder complications. The PDT with red light and IV-administered Photofrin could permanently damage the bladder muscle.

View Article and Find Full Text PDF

Mitochondria play an essential role in cancer treatment by providing apoptotic signals. Hexyl aminolevulinate, an FDA-approved diagnosis for non-muscle invasive bladder cancer, induces the production of protoporphyrin IX (PpIX) preferentially by mitochondria in cancer cells. Photosensitizer PpIX upon illumination can release active chemotherapy drugs from singlet oxygen-activatable prodrugs.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) initially employed red light, which caused some patients to experience permanent bladder contractions. PDT using the FDA-approved drug hexaminolevulinate (HAL), which produces protoporphyrin IX (PpIX) in the tumor, showed some promise but has low efficacy in treating non-muscle-invasive bladder cancer (NMIBC). We developed singlet oxygen-activatable prodrugs of two anticancer drugs, paclitaxel and mitomycin C, to enhance the antitumor effect of PpIX-PDT without producing systemic side effects, by promoting only local release of the active chemotherapeutic agent.

View Article and Find Full Text PDF

Gamma-glutamyl transferase 1 (GGT1) is a critical enzyme involved in the hydrolysis and/or transfer of gamma-glutamyl groups of glutathione, which helps maintain cysteine levels in plasma. In this study, we synthesized L-ABBA analogs to investigate their inhibitory effect on GGT1 hydrolysis and transpeptidase activity, with the goal of defining the pharmacophore of L-ABBA. Our structure-activity relationship (SAR) study revealed that an α-COO and α-NH group, as well as a two-CH unit distance between α-C and boronic acid, are essential for the activity.

View Article and Find Full Text PDF

Inhibitors of gamma-glutamyl transpeptidase (GGT1, aka gamma-glutamyl transferase) are needed for the treatment of cancer, cardiovascular illness and other diseases. Compounds that inhibit GGT1 have been evaluated in the clinic, but no inhibitor has successfully demonstrated specific and systemic GGT1 inhibition. All have severe side effects.

View Article and Find Full Text PDF

Bladder cancer is the first cancer for which PDT was clinically approved in 1993. Unfortunately, it was unsuccessful due to side effects like bladder contraction. Here, we summarized the recent progress of PDT for bladder cancers, focusing on photosensitizers and formulations.

View Article and Find Full Text PDF

We established a light-activatable prodrug strategy that produces the combination effect of photodynamic therapy (PDT) and site-specific chemotherapy. Prodrugs are activated by singlet oxygen (SO), generated from PS and visible or near IR light, in either intra- or inter-molecular manner. The goal of this study is to evaluate cytotoxic effects of nonmitochondria-targeted prodrugs of a number of anticancer drugs with different mechanisms of action.

View Article and Find Full Text PDF

Overexpression of γ-glutamyl transpeptidase (GGT1) has been implicated in an array of human diseases including asthma, reperfusion injury, and cancer. Inhibitors are needed for therapy, but development of potent, specific inhibitors of GGT1 has been hampered by a lack of structural information regarding substrate binding and cleavage. To enhance our understanding of the molecular mechanism of substrate cleavage, we have solved the crystal structures of human GGT1 (hGGT1) with glutathione (a substrate) and a phosphate-glutathione analog (an irreversible inhibitor) bound in the active site.

View Article and Find Full Text PDF

We demonstrated that a large primary and a small untreated distant breast cancer could be controlled by local treatment with our light-activatable paclitaxel (PTX) prodrug. We hypothesized that the treated tumor would be damaged by the combinational effects of photodynamic therapy (PDT) and locally released PTX and that the distant tumor would be suppressed by systemic antitumor effects. Syngeneic rat breast cancer models (single- and two-tumor models) were established on Fischer 344 rats by subcutaneous injection of MAT B III cells.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) has become an effective treatment for certain types of solid tumors. The combination of PDT with other therapies has been extensively investigated in recent years to improve its effectiveness and expand its applications. This focused review summarizes the development of a prodrug system in which anticancer drugs are activated locally at tumor sites during PDT treatment.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a clinically approved therapeutic modality to treat certain types of cancers. However, incomplete ablation of tumor is a challenge. Visible and near IR-activatable prodrug, exhibiting the combined effects of PDT and local chemotherapy, showed better efficacy than PDT alone, without systemic side effects.

View Article and Find Full Text PDF

Systemic side effects and high hydrophobicity are major disadvantages of paclitaxel (PTX), one of the most popular anticancer drugs. Here, we present singlet oxygen (SO)-activatable and mitochondria-targeted PTX prodrugs to overcome these problems and boost the cytotoxic effect of photodynamic therapy (PDT). Three PTX prodrugs were prepared by conjugating PTX with various cationic groups.

View Article and Find Full Text PDF

We recently demonstrated the far-red light-activatable prodrug of paclitaxel (PTX), Pc-(L-PTX). Upon illumination with a 690 nm laser, Pc-(L-PTX) showed combinational cell killing from rapid photodynamic therapy damage by singlet oxygen, followed by sustained chemotherapy effects from locally released PTX. However, its high lipophilicity (log > 3.

View Article and Find Full Text PDF

The combination of photodynamic therapy (PDT) with anti-tumor agents is a complimentary strategy to treat local cancers. We developed a unique photosensitizer (PS)-conjugated paclitaxel (PTX) prodrug in which a PS is excited by near-infrared wavelength light to site-specifically release PTX while generating singlet oxygen (SO) to effectively kill cancer cells with both PTX and SO. The aim of the present study was to identify the determinants influencing the combined efficacy of this light-activatable prodrug, especially the bystander killing effects from released PTX.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a method to release drugs using photo-unclick chemistry, triggered by singlet oxygen (SO), which can be activated by visible light and near-infrared light.
  • The research combines a photosensitizer and an SO-cleavable drug linker into one molecule or within drug delivery systems to enhance localized drug activation.
  • The results demonstrate successful activation of a specific prodrug using a mitochondria-targeting photosensitizer, highlighting a novel approach to controlled drug release.
View Article and Find Full Text PDF

Dentin is the major part of tooth and formed by odontoblasts. Under the influence of the inner enamel epithelium, odontoblasts differentiate from ectomesenchymal cells of the dental papilla and secrete pre-dentin which then undergo mineralization into dentin. Transforming growth factor-beta (TGF-β)/bone morphogenetic protein (BMP) signaling is essential for dentinogenesis; however, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Paclitaxel (PTX) is one of the most useful chemotherapeutic agents approved for several cancers, including ovarian, breast, pancreatic, and nonsmall cell lung cancer. However, it causes systemic side effects when administered parenterally. Photodynamic therapy (PDT) is a new strategy for treating local cancers using light and photosensitizer.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a cancer treatment modality where photosensitizer (PS) is activated by visible and near IR light to produce singlet oxygen ((1)O2). However, (1)O2 has a short lifetime (<40 ns) and cannot diffuse (<20 nm) beyond the cell diameter (e.g.

View Article and Find Full Text PDF

Longer wavelength light (650-800nm) is desired to treat large tumors in photodynamic therapy (PDT). However, shorter wavelength light is needed in PDT for thin tumors, not to cause undesirable local side effects. We proposed a strategy for stepwise optical imaging and PDT using a bioorthogonal click chemistry and fluorescence resonance energy transfer (FRET).

View Article and Find Full Text PDF
Article Synopsis
  • Cancer-specific survival rates have not improved much over the last 50 years due to the hidden and resilient nature of dormant micrometastases that manifest long after initial treatment.
  • Researchers developed a new screening method to test drug effects on cancer cells grown in a natural extracellular matrix (ECM) versus traditional plastic dishes, finding that some compounds were more effective in the ECM environment.
  • Two promising compounds were identified that significantly reduced dormant cancer cells and large metastases in mice, showing potential for better management of metastatic cancer compared to standard chemotherapeutics.
View Article and Find Full Text PDF

We discovered a rare phenomenon wherein a thieno-pyrrole fused BODIPY dye (SBDPiR690) generates singlet oxygen without heavy halogen atom substituents. SBDPiR690 generates both singlet oxygen and fluorescence. To our knowledge, this is the first example of such a finding.

View Article and Find Full Text PDF