Analog reservoir computing (ARC) systems have attracted attention owing to their efficiency in processing temporal information. However, the distinct functionalities of the system components pose challenges for hardware implementation. Herein, we report a fully integrated ARC system that leverages material versatility of the ferroelectric-to-mixed phase boundary (MPB) hafnium zirconium oxides integrated onto indium-gallium-zinc oxide thin-film transistors (TFTs).
View Article and Find Full Text PDFThe interest in ferroelectric tunnel junctions (FTJ) has been revitalized by the discovery of ferroelectricity in fluorite-structured oxides such as HfO and ZrO . In terms of thickness scaling, CMOS compatibility, and 3D integration, these fluorite-structured FTJs provide a number of benefits over conventional perovskite-based FTJs. Here, recent developments involving all FTJ devices with fluorite structures are examined.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2022
In the quest for highly scalable and three-dimensional (3D) stackable memory components, ferroelectric tunnel junction (FTJ) crossbar architectures are promising technologies for nonvolatile logic and neuromorphic computing. Most FTJs, however, require additional nonlinear devices to suppress sneak-path current, limiting large-scale arrays in practical applications. Moreover, the giant tunneling electroresistance (TER) remains challenging due to their inherent weak polarization.
View Article and Find Full Text PDFHafnia-based ferroelectric tunnel junctions (FTJs) have great potential for use in logic in nonvolatile memory because of their complementary metal-oxide-semiconductor process compatibility, low power consumption, high scalability, and nondestructive readout. However, typically, ferroelectrics have a depolarization field, resulting in poor endurance owing to the early dielectric breakdown. Herein, an outstandingly reliable and high-speed antiferroelectric HfZrO tunnel junction (AFTJ) is probed to understand whether it is a promising candidate for next-generation nonvolatile memory applications.
View Article and Find Full Text PDFRecently, hafnia ferroelectrics with two spontaneous polarization states have attracted marked attention for non-volatile, super-steep switching devices, and neuromorphic application due to their fast switching, scalability, and CMOS compatibility. However, field cycling-induced instabilities are a serious obstacle in the practical application of various low-power electronic devices that require a settled characteristic of polarization hysteresis. In this work, a large reduction in the field cycling-induced instabilities and significantly improved ferroelectric properties were observed in a Hf0.
View Article and Find Full Text PDFFerroelectric tunnel junctions (FTJs) have attracted research interest as promising candidates for non-destructive readout non-volatile memories. Unlike conventional perovskite FTJs, hafnia FTJs offer many advantages in terms of scalability and CMOS compatibility. However, so far, hafnia FTJs have shown poor endurance and relatively low resistance ratios and these have remained issues for real device applications.
View Article and Find Full Text PDFAmorphous oxide semiconductor-based thin film transistors (TFTs) have been considered as excellent switching elements for driving active-matrix organic light-emitting diodes (AMOLED) owing to their high mobility and process compatibility. However, oxide semiconductors have inherent defects, causing fast transient charge trapping and device instability. For the next-generation displays such as flexible, wearable, or transparent displays, an active semiconductor layer with ultrahigh mobility and high reliability at low deposition temperature is required.
View Article and Find Full Text PDFActive matrix organic light-emitting diodes (AMOLEDs) are considered to be a core component of next-generation display technology, which can be used for wearable and flexible devices. Reliable thin-film transistors (TFTs) with high mobility are required to drive AMOLEDs. Recently, amorphous oxide TFTs, due to their high mobility, have been considered as excellent substitutes for driving AMOLEDs.
View Article and Find Full Text PDF