Publications by authors named "Younghee Ahn"

The mechanisms underlying the clinical effects of CBD remain poorly understood. Given the increasing evidence for CBD's effects on mitochondria, we sought to examine in more detail whether CBD impacts mitochondrial function and neuronal integrity. We utilized BE(2)-M17 neuroblastoma cells or acutely isolated brain mitochondria from rodents using a Seahorse extracellular flux analyzer and a fluorescent spectrofluorophotometer assay.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder that exhibits a common set of behavioral and cognitive impairments. Although the etiology of ASD remains unclear, mitochondrial dysfunction has recently emerged as a possible causative factor underlying ASD. The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that augments mitochondrial function, and has been shown to reduce autistic behaviors in both humans and in rodent models of ASD.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the introduction of cRFP (common Repository of FBS Proteins) for improving mass spectrometry raw data analysis in cell secretomes by supplementing the reference database with abundant fetal bovine serum proteins.
  • The primary goal of cRFP is to reduce misidentification of these serum proteins as other proteins during data analysis, similar to the use of cRAP for adventitious proteins.
  • The authors anticipate that cRFP will be beneficial in experiments using serum-free media, complex media like SILAC, or extracellular vesicles.
View Article and Find Full Text PDF

The migration of leukocytes into the CNS drives the neuropathology of multiple sclerosis (MS). This penetration likely utilizes energy resources that remain to be defined. Using the experimental autoimmune encephalomyelitis (EAE) model of MS, we determined that macrophages within the perivascular cuff of post-capillary venules are highly glycolytic as manifested by strong expression of lactate dehydrogenase A (LDHA) that converts pyruvate to lactate.

View Article and Find Full Text PDF
Article Synopsis
  • The gut microbiome plays a role in inflammatory bowel disease (IBD), and the study examines how stress in the endoplasmic reticulum (ER) and mitochondria affects the epithelial barrier function.
  • Researchers used human colon samples and mouse models to test the impact of specific stressors on bacterial translocation and barrier integrity.
  • Surprisingly, inducing ER stress helped protect the epithelial barrier from damage caused by mitochondrial dysfunction, promoting bacterial clearance through a process called xenophagy.
View Article and Find Full Text PDF

A Gram-negative, aerobic, motile by flagella, and light yellow bacterium, designated SS1-76, was isolated from sediment of the Nakdong River in Sangju-si, Republic of Korea. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate SS1-76 belongs to the genus Uliginosibacterium of the family Rhodocyclaceae, exhibiting high sequence similarity with the type strains of Uliginosibacterium gangwonense 5YN10-9 (96.0%) and Uliginosibacterium paludis KBP-13 (94.

View Article and Find Full Text PDF

This study reports vibration profiles of neuronal cells and tissues as well as brain tumor and neocortical specimens. A contact-free method and analysis protocol was designed to convert an atomic force microscope into an ultra-sensitive microphone with capacity to record and listen to live biological samples. A frequency of 3.

View Article and Find Full Text PDF

Objectives: Carisbamate (CRS) is a novel monocarbamate compound that possesses antiseizure and neuroprotective properties. However, the mechanisms underlying these actions remain unclear. Here, we tested both direct and indirect effects of CRS on several cellular systems that regulate intracellular calcium concentration [Ca ] .

View Article and Find Full Text PDF

The ketogenic diet (KD) has been utilized as a dietary therapeutic for nearly a century. One experimental model particularly responsive to the KD is the BTBR (BTBR) mouse, which displays phenotypic characteristics of autism spectrum disorder (ASD) and insulin resistance. Recently, the study of impaired mitochondrial function has become a focal point of research investigating the pathophysiology of ASD.

View Article and Find Full Text PDF

Deregulation of mitochondrial heat-shock protein 40 (mtHsp40) and dysfunction of mtHsp70 are associated with mitochondrial fragmentation, suggesting that mtHsp40 and mtHsp70 may play roles in modulating mitochondrial morphology. However, the mechanism of mitochondrial fragmentation induced by mtHsp40 deregulation and mtHsp70 dysfunction remains unclear. In addition, the functional link between mitochondrial morphology change upon deregulated mtHsp40/mtHsp70 and mitochondrial function has been unexplored.

View Article and Find Full Text PDF

Objective: Ketone bodies (KB) are products of fatty acid oxidation and serve as essential fuels during fasting or treatment with the high-fat antiseizure ketogenic diet (KD). Despite growing evidence that KB exert broad neuroprotective effects, their role in seizure control has not been firmly demonstrated. The major goal of this study was to demonstrate the direct antiseizure effects of KB and to identify an underlying target mechanism.

View Article and Find Full Text PDF

PTEN is reversibly oxidized in various cells by exogenous hydrogen peroxide as well as by endogenous hydrogen peroxide generated when cells are stimulated with growth factors, cytokines and hormones. A gel mobility shift assay showed that oxidized PTEN migrated more rapidly than reduced PTEN on a non-reducing SDS-PAGE gel. Oxidized PTEN was reduced when treated with dithiothreitol.

View Article and Find Full Text PDF

Background: The molecular mechanisms underlying autistic behaviors remain to be elucidated. Mutations in genes linked to autism adversely affect molecules regulating dendritic spine formation, function and plasticity, and some increase the mammalian target of rapamycin, mTOR, a regulator of protein synthesis at spines. Here, we investigated whether the Akt/mTOR pathway is disrupted in idiopathic autism and in rats exposed to valproic acid, an animal model exhibiting autistic-like behavior.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder characterized by abnormal social interactions, communication deficits and stereotyped or repetitive behaviors. Although the etiology of ASD remains elusive, converging lines of research indicate that mitochondrial dysfunction may play a substantive role in disease pathophysiology. Without an established causal link, the generation of therapeutic targets for ASD has been relatively unsuccessful and has focused solely on individual symptoms.

View Article and Find Full Text PDF

Exposure of cells to hydrogen peroxide or platelet-derived growth factor (PDGF) induced Akt phosphorylation and oxidation of phosphatase and tensin homolog (PTEN). The Cys124 and Cys71 residues of PTEN were critical for the formation of a disulfide bond and the intermediate glutathionylation in the process of reduction of the disulfide bond. To determine which specific tyrosine residues of the PDGF beta receptor (PDGFβR) is involved in PDGF-induced PTEN oxidation and Akt phosphorylation, we investigated a kinase activity-deficient mutant and PDGFβR mutants where the tyrosine residues in the binding site for phosphoinositide 3-kinase (PI3K), GTPase-activating protein of Ras, Src homology 2 domain containing protein-tyrosine phosphatase-2, and phospholipase C-1 were replaced by Phe.

View Article and Find Full Text PDF

Human PTEN (phosphatase and tensin homolog deleted on chromosome 10; a phosphatidylinositol 3-phosphatase) expressed in Saccharomyces cerevisiae was oxidized in a time- and H(2)O(2)-concentration-dependent manner. Oxidized hPTEN was reduced by cellular reductants as in human cells. The reduction rate of oxidized hPTEN was monitored in S.

View Article and Find Full Text PDF

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expressed in Saccharomyces cerevisiae was reversibly oxidized by hydrogen peroxide and reduced by cellular reductants. Reduction of hPTEN was delayed in each of S. cerevisiae gsh1Delta and gsh2Delta mutants.

View Article and Find Full Text PDF

RPS3, a conserved, eukaryotic ribosomal protein of the 40 S subunit, is required for ribosome biogenesis. Because ribosomal proteins are abundant and ubiquitous, they may have additional extraribosomal functions. Here, we show that human RPS3 is a physiological target of Akt kinase and a novel mediator of neuronal apoptosis.

View Article and Find Full Text PDF

Background: Breast cancer is one of the leading causes of women's death worldwide. It is important to discover a reliable biomarker for the detection of breast cancer. Plasma is the most ideal source for cancer biomarker discovery since many cells cross-communicate through the secretion of soluble proteins into blood.

View Article and Find Full Text PDF

Glycosylation is the most important and abundant post-translational modification in serum proteome. Several specific types of glycan epitopes have been shown to be associated with various types of disease. Direct analysis of serum glycoproteins is challenging due to its wide dynamic range.

View Article and Find Full Text PDF

This study was conducted to develop the clinical-decision support system for the nursing process in the Electronic nursing record system. Nursing diagnoses were linked to 4 components of the nursing process (except for diagnoses) and applied to ENR in 2007.

View Article and Find Full Text PDF

Gonadotropin-releasing hormone-I (GnRH-I) is known to directly regulate prostate cancer cell proliferation. However, the role of GnRH-II in prostate cancer is unclear. Here, we investigated the effect of the GnRH-II antagonist trptorelix-1 (Trp-1) on growth of PC3 prostate cancer cells.

View Article and Find Full Text PDF

The tumour suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10; a phosphatidylinositol 3-phosphatase) is a multifunctional protein deregulated in many types of cancer. It is suggested that a number of proteins that relate with PTEN functionally or physically have not yet been found. In order to search for PTEN-interacting proteins that might be crucial in the regulation of PTEN, we exploited a proteomics-based approach.

View Article and Find Full Text PDF

Phosphoinositide-3 kinase (PI-3 kinase) and its downstream signaling molecules PDK-1 and Akt were analyzed in SK-N-SH and SK-N-BE(2) human neuroblastoma cell lines. When cells were stimulated with insulin, PI-3 kinase was activated in both cell lines, whereas the translocation of PDK-1 to the membrane fraction and phosphorylated Akt were observed only in SK-N-SH cells. Analyses of the insulin-mediated reactive oxygen species (ROS) generation and Phosphatase and Tensin homolog (PTEN) oxidation indicate that PTEN oxidation occurred in SK-N-SH cells, which can produce ROS, but not in SK-N-BE(2) cells, which cannot increase ROS in response to insulin stimulation.

View Article and Find Full Text PDF

Stimulation of cells with various peptide growth factors induces the production of phosphatidylinositol 3,4,5-trisphosphate (PIP3) through activation of phosphatidylinositol 3-kinase. The action of this enzyme is reversed by that of the tumor suppressor PTEN. With the use of cells overexpressing NADPH oxidase 1 or peroxiredoxin II, we have now shown that H2O2 produced in response to stimulation of cells with epidermal growth factor or platelet-derived growth factor potentiates PIP3 generation and activation of the protein kinase Akt induced by these growth factors.

View Article and Find Full Text PDF