Publications by authors named "Younghae Do"

The metapopulation network model is a mathematical framework used to study the spatial spread of epidemics with individuals' mobility. In this paper, we develop a time-varying network model in which the activity of a population is correlated with its attractiveness in mobility. By studying the spreading dynamics of the SIR (susceptible-infectious-recovered)-type disease in different correlated networks based on the proposed model, we theoretically derive the mobility threshold and numerically observe that increasing the correction between activity and attractiveness results in a reduced mobility threshold but suppresses the fraction of infected subpopulations.

View Article and Find Full Text PDF

In an ecosystem, environmental changes as a result of natural and human processes can cause some key parameters of the system to change with time. Depending on how fast such a parameter changes, a tipping point can occur. Existing works on rate-induced tipping, or R-tipping, offered a theoretical way to study this phenomenon but from a local dynamical point of view, revealing, e.

View Article and Find Full Text PDF

In this study, the non-linear dynamics of Taylor-Couette flow in a very small-aspect-ratio wide-gap annulus in a counter-rotating regime under the influence of radial through-flow are investigated by solving its full three-dimensional Navier-Stokes equations. Depending on the intensity of the radial flow, either an axisymmetric (pure [Formula: see text] mode) pulsating flow structure or an axisymmetric axially propagating vortex will appear subcritical, i.e.

View Article and Find Full Text PDF

Background: Although particulate matter likely provokes inflammatory reactions in those with chronic skin disorders like atopic dermatitis, no study has examined the relationship between particulate matter and psoriasis exacerbation.

Objective: This study evaluated possible associations between particulate matter and hospital visits for psoriasis patients in 7 major cities in South Korea.

Methods: We investigated the relationship between psoriasis and particulate matter.

View Article and Find Full Text PDF

A vertical annular configuration with differently heated cylindrical surfaces and horizontal adiabatic boundaries is systematically studied in view to their industrial applications. In this paper, we investigate the effects of conjugate buoyant heat transport in water based nanofluids with different nanoparticles such as alumina, titania or copper, and is filled in the enclosed annular gap. The annulus space is formed by a thick inner cylinder having a uniform high temperature, an exterior cylindrical tube with a constant lower temperature, and thermally insulated upper and lower surfaces.

View Article and Find Full Text PDF

In this paper we investigate the effects of an externally imposed axial mass flux (axial pressure gradient, axial through flow) on ferrofluidic Taylor-Couette flow under the influence of either an axial or a transverse magnetic field. Without an imposed axial through flow, due to the symmetry-conserving axial field and the symmetry-breaking transverse field, it gives rise to various vortex flows in ferrofluidic Taylor-Couette flow such as wavy Taylor vortex flow (wTVF), wavy spiral vortex flow (wSPI) and wavy vortex flows ([Formula: see text] and [Formula: see text]), which are typically produced by a nonlinear interaction of rotational, shear and magnetic instabilities. In addition, when an axial through flow is imposed to a ferrofluidic Taylor-Couette flow in the presence of either an axial or a transverse magnetic field, previously unknown new helical vortex structures are observed.

View Article and Find Full Text PDF

Cyclically competition models have been successful to gain an insight of biodiversity mechanism in ecosystems. There are, however, still limitations to elucidate complex phenomena arising in real competition. In this paper, we report that a multistability occurs in a simple rock-paper-scissor cyclically competition model by assuming that intraspecific competition depends on the logistic growth of each species density.

View Article and Find Full Text PDF

We investigate transient behaviors induced by magnetic fields on the dynamics of the flow of a ferrofluid in the gap between two concentric, independently rotating cylinders. Without applying any magnetic fields, we uncover emergence of flow states constituted by a combination of a localized spiral state in the top and bottom of the annulus and different multi-cell flow states with toroidally closed vortices in the interior of the bulk. However, when a magnetic field is presented, we observe the transient behaviors between multi-cell states passing through two critical thresholds in a strength of an axial (transverse) magnetic field.

View Article and Find Full Text PDF

We propose an efficient and accurate measure for ranking spreaders and identifying the influential ones in spreading processes in networks. While the edges determine the connections among the nodes, their specific role in spreading should be considered explicitly. An edge connecting nodes i and j may differ in its importance for spreading from i to j and from j to i.

View Article and Find Full Text PDF

Evolutionary games of cyclic competitions have been extensively studied to gain insights into one of the most fundamental phenomena in nature: biodiversity that seems to be excluded by the principle of natural selection. The Rock-Paper-Scissors (RPS) game of three species and its extensions [e.g.

View Article and Find Full Text PDF

We investigate fundamental nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined be-tween two concentric independently rotating cylinders - consider small aspect ratio by solving the ferro-hydrodynamical equations, carrying out systematic bifurcation analysis. Without magnetic field, we find steady flow patterns, previously observed with a simple fluid, such as those containing normal one- or two vortex cells, as well as anomalous one-cell and twin-cell flow states. However, when a symmetry-breaking transverse magnetic field is present, all flow states exhibit stimulated, finite two-fold mode.

View Article and Find Full Text PDF

We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied.

View Article and Find Full Text PDF

We investigate the Taylor-Couette system where the radius ratio is close to unity. Systematically increasing the Reynolds number, we observe a number of previously known transitions, such as one from the classical Taylor vortex flow (TVF) to wavy vortex flow (WVF) and the transition to fully developed turbulence. Prior to the onset of turbulence, we observe intermittent bursting patterns of localized turbulent patches, confirming the experimentally observed pattern of very short wavelength bursts (VSWBs).

View Article and Find Full Text PDF

A two-state epidemic model in networks with links mimicking two kinds of relationships between connected nodes is introduced. Links of weights w1 and w0 occur with probabilities p and 1-p, respectively. The fraction of infected nodes ρ(p) shows a nonmonotonic behavior, with ρ drops with p for small p and increases for large p.

View Article and Find Full Text PDF

Recent study shows that the accuracy of the k-shell method in determining node coreness in a spreading process is largely impacted due to the existence of core-like group, which has a large k-shell index but a low spreading efficiency. Based on the analysis of the structure of core-like groups in real-world networks, we discover that nodes in the core-like group are mutually densely connected with very few out-leaving links from the group. By defining a measure of diffusion importance for each edge based on the number of out-leaving links of its both ends, we are able to identify redundant links in the spreading process, which have a relatively low diffusion importance but lead to form the locally densely connected core-like group.

View Article and Find Full Text PDF

Epidemic threshold has always been a very hot topic for studying epidemic dynamics on complex networks. The previous studies have provided different theoretical predictions of the epidemic threshold for the susceptible-infected-recovered (SIR) model, but the numerical verification of these theoretical predictions is still lacking. Considering that the large fluctuation of the outbreak size occurs near the epidemic threshold, we propose a novel numerical identification method of SIR epidemic threshold by analyzing the peak of the epidemic variability.

View Article and Find Full Text PDF

It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We find that, in the presence of a magnetic field transverse to the symmetry axis of the system, turbulence can occur at Reynolds numbers that are at least one order of magnitude smaller than those in conventional fluids.

View Article and Find Full Text PDF

Identifying the most influential spreaders is an important issue in understanding and controlling spreading processes on complex networks. Recent studies showed that nodes located in the core of a network as identified by the k-shell decomposition are the most influential spreaders. However, through a great deal of numerical simulations, we observe that not in all real networks do nodes in high shells are very influential: in some networks the core nodes are the most influential which we call true core, while in others nodes in high shells, even the innermost core, are not good spreaders which we call core-like group.

View Article and Find Full Text PDF

We investigate high-dimensional nonlinear dynamical systems exhibiting multiple resonances under adiabatic parameter variations. Our motivations come from experimental considerations where time-dependent sweeping of parameters is a practical approach to probing and characterizing the bifurcations of the system. The question is whether bifurcations so detected are faithful representations of the bifurcations intrinsic to the original stationary system.

View Article and Find Full Text PDF

Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues in coexistence and biodiversity.

View Article and Find Full Text PDF

The spread of disease on complex networks has attracted wide attention in the physics community. Recent works have demonstrated that heterogeneous degree and weight distributions have a significant influence on the epidemic dynamics. In this study, a novel edge-weight-based compartmental approach is developed to estimate the epidemic threshold and epidemic size (final infected density) on networks with general degree and weight distributions, and a remarkable agreement with numerics is obtained.

View Article and Find Full Text PDF

Recently, the impacts of spatiotemporal heterogeneities of human activities on spreading dynamics have attracted extensive attention. In this paper, we intend to understand how the heterogeneous distribution of response times at the individual level influences information spreading. Based on the uncorrelated scale-free networks without degree-degree correlation, we study the susceptible-infected spreading dynamics with adjustable power-law response time distribution, and find that the stronger the heterogeneity of response times is, the faster the information spreading is in the early and middle stages.

View Article and Find Full Text PDF

In the present study, a novel technique, which involves numerical computation of the mixing length of algae particles in raceway ponds, was used to evaluate the mixing process. A value of mixing length that is higher than the maximum streamwise distance (MSD) of algae cells indicates that the cells experienced an adequate turbulent mixing in the pond. A coupling methodology was adapted to map the pulsating effects of a 2D paddle wheel on a 3D raceway pond in this study.

View Article and Find Full Text PDF

The spread of disease through a physical-contact network and the spread of information about the disease on a communication network are two intimately related dynamical processes. We investigate the asymmetrical interplay between the two types of spreading dynamics, each occurring on its own layer, by focusing on the two fundamental quantities underlying any spreading process: epidemic threshold and the final infection ratio. We find that an epidemic outbreak on the contact layer can induce an outbreak on the communication layer, and information spreading can effectively raise the epidemic threshold.

View Article and Find Full Text PDF

Ascertaining the existence of hidden objects in a complex system, objects that cannot be observed from the external world, not only is curiosity-driven but also has significant practical applications. Generally, uncovering a hidden node in a complex network requires successful identification of its neighboring nodes, but a challenge is to differentiate its effects from those of noise. We develop a completely data-driven, compressive-sensing based method to address this issue by utilizing complex weighted networks with continuous-time oscillatory or discrete-time evolutionary-game dynamics.

View Article and Find Full Text PDF