Herein we report the first successful synthesis of ethanol-assisted generated reduced graphene oxide as a support for CuO/NiO nanoparticles. Through the strategic incorporation of Cu and Ni precursors into ethanol, followed by thermal treatment, we achieved the fabrication of reduced graphene oxide-supported CuO/NiO nanoparticles. The material underwent thorough characterization using FT-IR, XRD, TEM, XPS, Raman, and UV-DRS analysis.
View Article and Find Full Text PDFIn semiconductor fabrication (FAB), wafers are placed into carriers known as Front Opening Unified Pods (FOUPs), transported by the Overhead Hoist Transport (OHT). The OHT, a type of Automated Guided Vehicle (AGV), moves along a fixed railway network in the FAB. The routes of OHTs on the railway network are typically determined by a Single Source Shortest Path (SSSP) algorithm such as Dijkstra's.
View Article and Find Full Text PDFIn this study, spinel cobalt oxide (CoO) nanoparticles without combining with any other metal atoms have been decorated through the influence of two hard templating agents, viz., zeolite-Y and carboxy-functionalized multiwalled carbon nanotubes (COOH-MWCNT). The adornment of the CoO nanoparticles, through the combined impact of the aluminosilicate and carbon framework has resulted in quantum interference, causing the reversal of signatory Raman peaks of CoO.
View Article and Find Full Text PDFAqueous zinc-ion batteries (AZIBs) are receiving increasing attention for power-grid energy storage systems. Nevertheless, warranting long-term reversible operation is not trivial owing to uncontrolled interfacial phenomena related to zinc dendritic growth and parasitic reactions. Herein, the addition of hexamethylphosphoramide (HMPA) to the electrolyte revealed the surface overpotential (|η|) to be a key metric of the reversibility.
View Article and Find Full Text PDFObjective: This study aimed to introduce a novel negative pressure aerosol box (Carrycure Isolator) and to test its efficiency and limitations, with the hope of suggesting improvements and further directions.
Methods: A novel aerosol box (Carrycure Isolator) was invented. A single-center, randomized, crossover simulation study of 28 emergency medicine physicians was designed.
Angew Chem Int Ed Engl
November 2022
Despite substantial progresses, in aqueous zinc ion batteries (AZIBs), developing zinc metal anodes with long-term reliable cycling capabilities is nontrivial because of dendritic growth and related parasitic reactions on the zinc surface. Here, we exploit the tip-blocking effect of a scandium (Sc ) additive in the electrolyte to induce uniform zinc deposition. Additional to the tri-valency of Sc , the rigidity of its hydration shell effectively prevents zinc ions from concentrating at the surface tips, enabling highly stable cycling under challenging conditions.
View Article and Find Full Text PDFAqueous zinc ion batteries are receiving increasing attention for large-scale energy storage systems owing to their attractive features with respect to safety, cost, and scalability. Although vanadium oxides with various compositions have been demonstrated to store zinc ions reversibly, their limited cyclability especially at low current densities and their poor calendar life impede their widespread practical adoption. Herein, we reveal that the electrochemically inactive zinc pyrovanadate (ZVO) phase formed on the cathode surface is the main cause of the limited sustainability.
View Article and Find Full Text PDFHighly sensitive and flexible composite sensors with pressure and temperature sensing abilities are of great importance in human motion monitoring, robotic skins, and automobile seats when checking the boarding status. Several studies have been conducted to improve the temperature-pressure sensitivity; however, they require a complex fabrication process for micro-nanostructures, which are material-dependent. Therefore, there is a need to develop the structural designs to improve the sensing abilities.
View Article and Find Full Text PDFFunctionalized graphene-polymer nanocomposites have gained significant attention for their enhanced mechanical, thermal, and antibacterial properties, but the requirement of multi-step processes or hazardous reducing agents to functionalize graphene limits their current applications. Here, we present a single-step synthesis of thermally reduced graphene oxide (TrGO) based on shellac, which is a low-cost biopolymer that can be employed to produce poly(vinyl alcohol) (PVA)/TrGO nanocomposites (PVA-TrGO). The concentration of TrGO varied from 0.
View Article and Find Full Text PDFThe development of a flexible electronic skin (e-skin) highly sensitive to multimodal vibrations and a specialized sensing ability is of great interest for a plethora of applications, such as tactile sensors for robots, seismology, healthcare, and wearable electronics. Here, we present an e-skin design characterized by a bioinspired, microhexagonal structure coated with single-walled carbon nanotubes (SWCNTs) using an ultrasonic spray method. We have demonstrated the outstanding performances of the device in terms of the capability to detect both static and dynamic mechanical stimuli including pressure, shear displacement, and bending using the principles of piezoresistivity.
View Article and Find Full Text PDFDespite the prevalence of lithium ion batteries in modern technology, the search for alternative electrochemical systems to complement the global battery portfolio is an ongoing effort. The search has resulted in numerous candidates, among which mildly acidic aqueous zinc ion batteries have recently garnered significant academic interest, mostly due to their inherent safety. As the anode is often fixed as zinc metal in these systems, most studies address the absence of a suitable cathode for reaction with zinc ions.
View Article and Find Full Text PDFIn this study, we investigated the gauge factor and compressive modulus of hybrid nanocomposites of exfoliated graphite nanoplatelets (xGnP) and multiwalled carbon nanotubes (MWCNTs) in a polydimethylsiloxane matrix under compressive strain. Mechanical and electrical tests were conducted to investigate the effects of nanofiller wt %, the xGnP size, and xGnP:MWCNT ratio on the compressive modulus and sensitivity of the sensors. It was found that nanofiller wt %, the xGnP size, and xGnP:MWCNT ratio significantly affect the electromechanical properties of the sensor.
View Article and Find Full Text PDFThermotherapy is a widespread technique that provides relief for muscle spasms and joint injuries. A great deal of energy is used to heat the surrounding environment, and heat emitted by the human body is wasted on our surroundings. Herein, a woven Kevlar fiber (WKF)-based personal thermal management device was fabricated by directly growing vertical copper-nickel (Cu-Ni) nanowires (NWs) on the WKF surface using a hydrothermal method.
View Article and Find Full Text PDFWell-aligned NiCoS nanowires, synthesized hydrothermally on the surface of woven Kevlar fiber (WKF), were used to fabricate composites with reduced graphene oxide (rGO) dispersed in polyester resin (PES) by means of vacuum-assisted resin transfer molding. The NiCoS nanowires were synthesized with three precursor concentrations. Nanowire growth was characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy.
View Article and Find Full Text PDFSolid-state grinding of palladium and copper salts allowed the growth of palladium/copper oxide interface at the zeolite-Y surface. The hybrid nanostructured material was used as reusable heterogeneous catalyst for selective oxidation of various benzyl alcohols. The large surface area provided by the zeolite-Y matrix highly influenced the catalytic activity, as well as the recyclability of the synthesized catalyst.
View Article and Find Full Text PDFWe synthesized Ag nanoparticle-decorated multilayered graphene nanosheets (Ag-graphene) from graphite nanoplatelets and silver nitrate through 90-100 s of microwave exposure, without the use of any mineral acids or harsh reducing agents. Fe nanoparticle-decorated carbon nanotubes (Fe-CNTs) were grown on polypyrrole (PPy) deposited on woven Kevlar fibre (WKF), using ferrocene as a catalyst, under microwave irradiation. Fe-CNTs grown on WKF and Ag-graphene dispersed in polyester resin (PES) were combined to fabricate Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites by vacuum-assisted resin transfer moulding.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
November 2015
This study focuses on the effect of annealing the Au seed layer (ASL) on the structural and optical properties of electrodeposited ZnO nanorods. ZnO nanorods were fabricated in a three-step approach. In the first step, ASLs were deposited using an ion sputter technique.
View Article and Find Full Text PDFIn 2012, a new norovirus GII.4 variant (GII.4 Sydney) emerged and caused the majority of the acute gastroenteritis outbreaks in Australia, Asia, Europe, and North America.
View Article and Find Full Text PDFIn this study, we report a novel regrowth method of sol-gel-prepared ZnO films using a vapor-confined face-to-face annealing (VC-FTFA) technique in which mica was inserted between two films, followed by annealing with the FTFA method. The ZnO nanorods are regrown when zinc acetate dihydrate and zinc chloride (ZnCl2) are used as the solvent, because these generate ZnCl2 vapor. The near-band-edge emission intensity of the ZnO nanorods was enhanced through the VC-FTFA method, increasing significantly by a factor of 56 compared to that of ZnO films annealed in open air at 700 °C.
View Article and Find Full Text PDFAlthough the short isoform of ErbB3-binding protein 1 (Ebp1), p42 has been considered to be a potent tumor suppressor in a number of human cancers, whether p42 suppresses tumorigenesis of lung cancer cells has never been clarified. In the current study we investigated the tumor suppressor role of p42 in non-small cell lung cancer cells. Our data suggest that the expression level of p42 is inversely correlated with the cancerous properties of NSCLC cells and that ectopic expression of p42 is sufficient to inhibit cell proliferation, anchorage-independent growth, and invasion as well as tumor growth in vivo.
View Article and Find Full Text PDFDefects in brain development are believed to contribute toward the onset of neuropsychiatric disorders, but identifying specific underlying mechanisms has proven difficult. Here, we took a multifaceted approach to investigate why 15q11.2 copy number variants are prominent risk factors for schizophrenia and autism.
View Article and Find Full Text PDFPoly(dopamine)-treated graphene oxide/poly(vinyl alcohol) ("dG-O/PVA") composite films were made and characterized. G-O was modified with poly(dopamine) in aqueous solution and then chemically reduced to yield poly(dopamine)-treated reduced G-O. A combination of hydrogen bonding, strong adhesion of poly(dopamine) at the interface of PVA and G-O sheets, and reinforcement by G-O resulted in increases in tensile modulus, ultimate tensile strength, and strain-to-failure by 39, 100, and 89%, respectively, at 0.
View Article and Find Full Text PDFHuman noroviruses (NoVs) are a major cause of non-bacterial gastroenteritis. Although histo-blood group antigens (HBGAs) have been implicated in the initial binding of NoV, the mechanism of that binding before internalization is not clear. To determine the involvement of NoVs and HBGAs in cell binding, we examined the localization of NoV virus-like particles (VLPs) and HBGAs in a human intestinal cell line and the human ileum biopsy specimens by immunofluorescence microscopy.
View Article and Find Full Text PDF