Publications by authors named "YoungSeok Jin"

We propose a frequency-modulated continuous wave (FMCW) radar estimation algorithm with high resolution and low complexity. The fast Fourier transform (FFT)-based algorithms and multiple signal classification (MUSIC) algorithms are used as algorithms for estimating target parameters in the FMCW radar systems. FFT-based and MUSIC algorithms have tradeoff characteristics between resolution performance and complexity.

View Article and Find Full Text PDF

This paper proposes a high-efficiency super-resolution frequency-modulated continuous-wave (FMCW) radar algorithm based on estimation by fast Fourier transform (FFT). In FMCW radar systems, the maximum number of samples is generally determined by the maximum detectable distance. However, targets are often closer than the maximum detectable distance.

View Article and Find Full Text PDF

In this paper, we propose a Doppler spectrum-based passenger detection scheme for a CW (Continuous Wave) radar sensor in vehicle applications. First, we design two new features, referred to as an 'extended degree of scattering points' and a 'different degree of scattering points' to represent the characteristics of the non-rigid motion of a moving human in a vehicle. We also design one newly defined feature referred to as the 'presence of vital signs', which is related to extracting the Doppler frequency of chest movements due to breathing.

View Article and Find Full Text PDF

This paper proposes a low complexity multiple-signal-classifier (MUSIC)-based direction-of-arrival (DOA) detection algorithm for frequency-modulated continuous-wave (FMCW) vital radars. In order to reduce redundant complexity, the proposed algorithm employs characteristics of distance between adjacent arrays having trade-offs between field of view (FOV) and resolution performance. First, the proposed algorithm performs coarse DOA estimation using fast Fourier transform.

View Article and Find Full Text PDF

In this paper, we propose a Doppler-spectrum feature-based human-vehicle classification scheme for an FMCW (frequency-modulated continuous wave) radar sensor. We introduce three novel features referred to as the scattering point count, scattering point difference, and magnitude difference rate features based on the characteristics of the Doppler spectrum in two successive frames. We also use an SVM (support vector machine) and BDT (binary decision tree) for training and validation of the three aforementioned features.

View Article and Find Full Text PDF

A low-complexity joint range and Doppler frequency-modulated continuous wave (FMCW) radar algorithm based on the number of targets is proposed in this paper. This paper introduces two low-complexity FMCW radar algorithms, that is, region of interest (ROI)-based and partial discrete Fourier transform (DFT)-based algorithms. We find the low-complexity condition of each algorithm by analyzing the complexity of these algorithms.

View Article and Find Full Text PDF

This paper proposes a low-complexity frequency-modulated continuous wave (FMCW) surveillance radar algorithm using random dual chirps in order to overcome the blind-speed problem and reduce the computational complexity. In surveillance radar algorithm, the most widely used moving target indicator (MTI) algorithm is proposed to effectively remove clutter. However, the MTI algorithm has a so-called 'blind-speed problem' that cannot detect a target of a specific velocity.

View Article and Find Full Text PDF

For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function.

View Article and Find Full Text PDF