Publications by authors named "YoungPak Lee"

The absorption of electromagnetic waves in a broadband frequency range with polarization insensitivity and incidence-angle independence is greatly needed in modern technology applications. Many structures based on metamaterials have been suggested for addressing these requirements; these structures were complex multilayer structures or used special materials or external electric components, such as resistive ones. In this paper, we present a metasurface structure that was fabricated simply by employing the standard printed-circuit-board technique but provides a high absorption above 90% in a broadband frequency range from 12.

View Article and Find Full Text PDF

It is of great technological importance in the field of plasmonic color generation to establish and understand the relationship between optical responses and the reflectance of metallic nanoparticles. Previously, a series of indium nanoparticle ensembles were fabricated using electron beam evaporation and inspected using spectroscopic ellipsometry (SE). The multi-oscillator Lorentz-Drude model demonstrated the optical responses of indium nanoparticles with different sizes and size distributions.

View Article and Find Full Text PDF

We propose an accurate and rapid azimuth calibration method for polarizing elements in ellipsometry. Over 200 calibrations were achieved simultaneously at different wavelength points in a spectral range of 550-650 nm without any calibrated element. The azimuth of the polarizer was determined from the differential spectral analysis on the ellipse azimuth of reflected light.

View Article and Find Full Text PDF

Unlike the single grating Czerny-Turner configuration spectrometers, a super-high spectral resolution optical spectrometer with zero coma aberration is first experimentally demonstrated by using a compound integrated diffraction grating module consisting of 44 high dispersion sub-gratings and a two-dimensional backside-illuminated charge-coupled device array photodetector. The demonstrated super-high resolution spectrometer gives 0.005 nm (5 pm) spectral resolution in ultra-violet range and 0.

View Article and Find Full Text PDF

In this work, we design a structure of metamaterials that consists of double sliver-ring resonators, in which highly-dispersive unidirectional reflectionlessness and absorption are achieved based on high-order plasmon resonance. Reflections of +z and -z directions at 461.34 THz (456.

View Article and Find Full Text PDF

In this work, the two-dimensional profile of the light transmission through a prism-like metallic film sample of Au was measured at a wavelength of 632.8 nm in the visible intraband transition region to verify that, beyond the possible mechanisms of overcoming the diffraction limit, a strongly nonuniform optical absorption path length of the light traveling in the metal could induce a lensing effect, thereby narrowing the image of an object. A set of prism-like Au samples with different angles was prepared and experimentally investigated.

View Article and Find Full Text PDF

Optical spectrometers play a key role in acquiring rich photonic information in both scientific research and a wide variety of applications. In this work, we present a new spectrometer with an ultrahigh resolution of better than 0.012 nm/pixel in the 170-600 nm spectral region using a grating-integrated module that consists of 19 subgratings without any moving parts.

View Article and Find Full Text PDF

Dual-band unidirectional reflectionlessness at exceptional points is investigated theoretically in a non-Hermitian plasmonic waveguide system, based on near-field coupling by using only two resonators. The system consists of a metal-insulator-metal waveguide end-coupled to two nanohole resonators. The reflectivity for the forward (backward) direction is ∼0 (∼0) at frequency 205.

View Article and Find Full Text PDF

Dual-band unidirectional reflectionless propagation at two exceptional points is investigated in metamaterial, which is composed of only two gold resonators with circular holes, by simply manipulating the angle of incident wave and distance between two resonators. Furthermore, the dual-band unidirectional reflectionless propagation can be realized in the wide ranges of incident angle from 0 ∘ to 50 ∘ and distance from 255 nm to 355 nm between two resonators. In addition, our scheme is insensitive to polarization of incident wave due to the circular-hole structure of the resonators.

View Article and Find Full Text PDF

Optical spectrometers play an important role in modern scientific research. In this work, we present a two-channel spectrometer with a pixel resolution of better than 0.1 nm/pixel in the wavelength range of 200 to 950 nm and an acquisition speed of approximately 25 spectra per second.

View Article and Find Full Text PDF

An integrated model utilizing external parasitic capacitors for a dual-band metamaterial perfect absorber (DMPA) is proposed and demonstrated in the UHF radio band. By adjusting the lumped capacitors on a simple meta-surface, the thickness of absorber is reduced to be only 1/378 and 1/320 with respect to the operating wavelength at 305 and 360.5 MHz, respectively.

View Article and Find Full Text PDF

Unidirectional reflectionless phenomena are investigated theoretically in a non-Hermitian quantum system composed of several quantum dots and a plasmonic waveguide. By adjusting the phase shifts between quantum dots, single- and dual-band unidirectional reflectionlessnesses are realized at exceptional points based on two and three quantum dots coupled to a plasmonic waveguide, respectively. In addition, single- and dual-band unidirectional perfect absorptions with high quality factors are obtained at the vicinity of exceptional points.

View Article and Find Full Text PDF

Dual-band unidirectional reflectionlessness and coherent perfect absorption (CPA) are demonstrated in a non-Hermitian plasmonic waveguide system based on near-field coupling between a single resonator and the resonant modes of two resonators showing an electromagnetically induced-transparency-like (EIT-like) effect. The non-Hermitian plasmonic system consists of three metal-insulator-metal (MIM) resonators coupled to a MIM plasmonic waveguide.

View Article and Find Full Text PDF

We numerically and experimentally investigated a dual-band metamaterial perfect absorber (MPA), utilizing the near-field coupling of double split-ring resonators (DSRRs). Owing to the near-field coupling between resonators, two arms in each DSRR resonate in different phases, leading to a dual-band perfect absorption. The proposed MPA also exhibits polarization-insensitive behavior and maintains the high absorption above 90% up to a wide range of incident angle more than 45°.

View Article and Find Full Text PDF

An effective scheme on switching the exceptional point(EP) where unidirectional reflectionlessness occurs is firstly proposed in non-ideal PT metamaterial via the polarization of incident light. The unidirectional reflectionlessness could be effectively controlled only by adjusting the phase coupling of the two resonators which are consisted of two identical but vertically placed crosses and are excited by incident light as an effective gain. Besides, the unidirectional perfect absorber occurs in the vicinity of EP.

View Article and Find Full Text PDF

An efficient resolution for ultrathin metamaterial perfect absorber (MPA) is proposed and demonstrated in the VHF radio band (30-300 MHz). By adjusting the lumped capacitors and the through vertical interconnects, the absorber is miniaturized to be only λ/816 and λ/84 for its thickness and periodicity with respect to the operating wavelength (at 102 MHz), respectively. The detailed simulation and calculation show that the MPA can maintain an absorption rate over 90% in a certain range of incident angle and with a wide variation of capacitance.

View Article and Find Full Text PDF

In this work, 4-layered SiO/BiTe/SiO/Cu film structures were designed and fabricated and the optical properties investigated in the wavelength region of 250-1200 nm for their promising applications for direct solar-thermal-electric conversion. A typical 4-layered film sample with the structure SiO (66.6 nm)/BiTe (7.

View Article and Find Full Text PDF

We realized the tunable metamaterial hyper-transmitter in the microwave range utilizing simple planar meta-structure. The single-layer metamaterial hyper-transmitter shows that the transmission peak occurs at 14 GHz. In case of the dual-layer one, it is possible to control the transmission peak from 5 to 10 GHz.

View Article and Find Full Text PDF

From visible to mid-infrared frequencies, molecular sensing has been a major successful application of plasmonics because of the enormous enhancement of the surface electromagnetic nearfield associated with the induced collective motion of surface free carriers excited by the probe light. However, in the lower-energy terahertz (THz) region, sensing by detecting molecular vibrations is still challenging because of low sensitivity, complicated spectral features, and relatively little accumulated knowledge of molecules. Here, we report the use of a micron-scale thin-slab metamaterial (MM) architecture, which functions as an amplifier for enhancing the absorption signal of the THz vibration of an ultrathin adsorbed layer of large organic molecules.

View Article and Find Full Text PDF

Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown.

View Article and Find Full Text PDF

We propose polarization-independent and dual-broadband metamaterial absorbers at microwave frequencies. This is a periodic meta-atom array consisting of metal-dielectric-multilayer truncated cones. We demonstrate not only one broadband absorption from the fundamental magnetic resonances but additional broadband absorption in high-frequency range using the third-harmonic resonance, by both simulation and experiment.

View Article and Find Full Text PDF

We propose a dual-band metamaterial perfect absorber at microwave frequencies. Using a planar metamaterial, which consists of periodic metallic donut-shape meta-atoms at the front separated from the metallic plane at the back by a dielectric layer, we demonstrate the multi-plasmonic high-frequency perfect absorptions induced by the third-harmonic as well as the fundamental magnetic resonances. The origin of the induced multi-plasmonic perfect absorption was elucidated.

View Article and Find Full Text PDF

Antireflection (AR) coatings that exhibit multifunctional characteristics, including high transparency, robust resistance to moisture, high hardness, and antifogging properties, were developed based on hollow silica-silica nanocomposites. These novel nanocomposite coatings with a closed-pore structure, consisting of hollow silica nanospheres (HSNs) infiltrated with an acid-catalyzed silica sol (ACSS), were fabricated using a low-cost sol-gel dip-coating method. The refractive index of the nanocomposite coatings was tailored by controlling the amount of ACSS infiltrated into the HSNs during synthesis.

View Article and Find Full Text PDF

We propose multi-band metamaterial absorbers at microwave frequencies. The design, the analysis, the fabrication, and the measurement of the absorbers working in multiple bands are presented. The numerical simulations and the experiments in the microwave anechoic chamber were performed.

View Article and Find Full Text PDF

Optical properties and thermal stability of the solar selective absorber based on the metal/dielectric four-layer film structure were investigated in the variable temperature region. Numerical calculations were performed to simulate the spectral properties of multilayer stacks with different metal materials and film thickness. The typical four-layer film structure using the transition metal Cr as the thin solar absorbing layer [SiO(2)(90nm)/Cr(10nm)/SiO(2)(80nm)/Al (≥100nm)] was fabricated on the Si or K9 glass substrate by using the magnetron sputtering method.

View Article and Find Full Text PDF