Publications by authors named "YoungGyu Kim"

Lithium solid-state batteries offer improved safety and energy density. However, the limited stability of solid electrolytes (SEs), as well as irreversible structural and chemical changes in the cathode active material, can result in inferior electrochemical performance, particularly during high-voltage cycling (>4.3 V vs Li/Li).

View Article and Find Full Text PDF

Solid-state batteries promise higher energy density and improved safety compared with lithium-ion batteries. However, electro-chemomechanical instabilities at the solid electrolyte interface with the cathode and the anode hinder their large scale implementation. Here, we focus on resolving electro-chemo-mechanical instability mechanisms and their onset conditions between a state-of-the-art cathode, LiNiMnCoO (NMC622), and the garnet LiLaZrO (LLZO) solid electrolyte.

View Article and Find Full Text PDF

Background: Listeria monocytogenes is a pathogenic bacterium that can lead to severe illnesses, especially among vulnerable populations. Therefore, the development of rapid and sensitive detection methods is vital to prevent and manage foodborne diseases. In this study, we used tetraethylenepentamine (TEPA)-functionalized magnetic nanoparticles (MNPs) and a loop-mediated isothermal amplification (LAMP)-based CRISPR/Cas12a-based biosensor to concentrate and detect, respectively, L.

View Article and Find Full Text PDF

The deep learning approach has recently attracted much attention for its outstanding performance to assist in clinical diagnostic tasks, notably in computer-aided solutions. Computer-aided solutions are being developed using chest radiography to identify lung diseases. A chest X-ray image is one of the most often utilized diagnostic imaging modalities in computer-aided solutions since it produces non-invasive standard-of-care data.

View Article and Find Full Text PDF

Cre recombinase is widely used to manipulate DNA sequences for both in vitro and in vivo research. Attachment of a trans-activator of transcription (TAT) sequence to Cre allows TATCre to penetrate the cell membrane, and the addition of a nuclear localization signal (NLS) helps the enzyme to translocate into the nucleus. Since the yield of recombinant TAT-Cre is limited by formation of inclusion bodies, we hypothesized that the positively charged arginine-rich TAT sequence causes the inclusion body formation, whereas its neutralization by the addition of a negatively charged sequence improves solubility of the protein.

View Article and Find Full Text PDF

Understanding the underlying principles for the target-specific nuclease activity of CRISPR/Cas9 is a prerequisite to minimize its off-target DNA cleavage for genome engineering applications. Here, we show that the noncatalytic REC2 domain of Cas9 nuclease plays a crucial role in off-target discrimination. Using single-molecule fluorescence methods, we investigate conformational dynamics of the non-target strand (NTS) of DNA interacting with Cas9 and find that REC2 regulates the NTS rearrangement for cleavage reaction with the help of positively charged residues on its surface.

View Article and Find Full Text PDF

Previously, we reported a method for facile purification of oligonucleotides labeled with hydrophobic dyes, based on the solubility difference between the hydrophilic DNA and unreacted dye. Here, we present a new purification method applicable to any dye regardless of its hydrophobicity. We exploited the population shift of a fluorescent dye in a low-pH aqueous solution from its anionic form toward its neutral form.

View Article and Find Full Text PDF

[Purpose] The purpose of this study was to demonstrate the use of bioelectrical impedance analysis as an appropriate rehabilitation therapy evaluation tool for stroke hemiplegic patients. [Subjects and Methods] A group of 20 stroke patients diagnosed with stroke hemiplegia who underwent stroke rehabilitation from October to November 2015 participated in this study. Using bioelectrical impedance analysis, stroke hemiparalysis patients were examined, and the affected and non-affected sides were compared.

View Article and Find Full Text PDF

The structural and optical properties of the ZnO thin films grown on mica substrates for different precursor concentrations were investigated. The surface morphologies of all the samples indicated that they consisted of granular structures with spherical nano-sized crystallites. The thickness of the ZnO thin films increased significantly and the optical band gap exhibited a blue shift with an increase in the precursor concentration.

View Article and Find Full Text PDF

A combination of DNA stretching method and super-resolution nanoscopy allows an accurate and precise measurement of the length of DNA fragments ranging widely in size from 117 to 23,130 bp. BstEII- and HindIII-treated λDNA fragments were stained with an intercalating dye and then linearly stretched on a coverslip by dynamic molecular combing. The image of individual DNA fragments was obtained by stimulated emission depletion nanoscopy.

View Article and Find Full Text PDF

Muscovite mica is one of the promising alternatives to polymer substrates because of its good thermal resistivity, flexibility, and transparency. In this study, metallic Zn films with a thickness of 300 nm were deposited on mica substrates through thermal evaporation; the thin films were then oxidized by annealing at temperatures ranging from 350 to 550 degrees C. The structural and optical properties of thermally oxidized ZnO thin films were investigated.

View Article and Find Full Text PDF

We investigated the structural and optical properties of the ZnO thin films formed by oxidation of Zn thin films. Zn thin films were deposited by thermal evaporation and were then annealed from 300 to 800 degrees C to prepare ZnO thin films. We found that ZnO thin films were formed by thermal oxidation of Zn thin films at oxidation temperatures over 400 degrees C.

View Article and Find Full Text PDF

Background And Purpose: Cerebral angiography (CA) is the gold standard for moyamoya disease (MMD) staging and diagnosis, but CA findings are not well correlated with clinical symptoms. The purpose of this study was to establish novel cerebral-perfusion-based staging for MMD that is well correlated with clinical symptoms.

Materials And Methods: From 2010 to 2015, regional cerebrovascular reserve (rCVR) was examined by single-photon emission computed tomography (SPECT) using NeuroGam® (Segamicorp, Houston, TX, USA) in 30 patients (17 women, 13 men; 60 hemispheres; mean 42.

View Article and Find Full Text PDF

Sol-gel spin-coating was used to deposit ZnO seed layers onto quartz substrates, and ZnO nanorods doped with various concentrations of B (i.e., BZO nanorods) ranging from 0 to 2.

View Article and Find Full Text PDF

Hydrothermally grown ZnO nanorods were doped with various concentrations of Sn, ranging from 0 to 2.5 at%. Scanning electron microscopy (SEM), X-ray diffractometer (XRD), ultraviolet (UV)-visible spectroscopy, and Photoluminescence (PL) measurements were used to determine the effect of Sn doping on the structural and optical properties.

View Article and Find Full Text PDF

Yttrium-doped ZnO (YZO) nanorods were synthesized by hydrothermal growth on a quartz substrate with various post-annealing temperatures. To investigate the effects of post-annealing on the optical properties and parameters of the nanorods, X-ray diffractometry (XRD), photoluminescence (PL) measurement, and ultraviolet (UV)-visible spectroscopy were used. From the XRD investigation, the full width at half maximum (FWHM) and the dislocation density of the nanorods was found to increase with an increase in the post-annealing temperature.

View Article and Find Full Text PDF

The past decade has seen an explosive growth in the utilization of single-molecule techniques for the study of complex systems. The ability to resolve phenomena otherwise masked by ensemble averaging has made these approaches especially attractive for the study of biological systems, where stochastic events lead to inherent inhomogeneity at the population level. The complex composition of the genome has made it an ideal system to study at the single-molecule level, and methods aimed at resolving genetic information from long, individual, genomic DNA molecules have been in use for the last 30 years.

View Article and Find Full Text PDF

We developed an efficient, cost-effective, and rapid purification method for chemically-labeled oligonucleotides that requires less time than conventional procedures such as ethanol precipitation or size-exclusion chromatography. Based on the hydrophilic and hydrophobic properties of DNA and amine-reactive fluorophores, we show that n-butanol saturated with distilled water may be used to remove unreacted fluorophores by sequestering them in the organic phase, while labeled DNA remains in the aqueous phase. This phase extraction method is simple, fast, and allows for processing multiple samples simultaneously, a necessity for high-throughput labeling strategies.

View Article and Find Full Text PDF

Fluorescent nanodiamonds (FNDs) are very promising fluorophores for use in biosystems due to their high biocompatibility and photostability. To overcome their tendency to aggregate in physiological solutions, which severely limits the biological applications of FNDs, we developed a new non-covalent coating method using a block copolymer, PEG-b-P(DMAEMA-co-BMA), or proteins such as BSA and HSA. By simple mixing of the block copolymer with FNDs, the cationic DMAEMA and hydrophobic BMA moieties can strongly interact with the anionic and hydrophobic moieties on the FND surface, while the PEG block can form a shell to prevent the direct contact between FNDs.

View Article and Find Full Text PDF

Objective: Chronic subdural hematoma (CSDH) is a typical disease that is encountered frequently in neurosurgical practice. The medications which could cause coagulopathies were known as one of the risk factors of CSDH, such as anticoagulants (ACs) and antiplatelet agents (APs). Recently, the number of patients who are treated with ACs/APs is increasing, especially in the elderly population.

View Article and Find Full Text PDF

Severe acute respiratory syndrome (SARS) is an infectious disease with a strong potential for transmission upon close personal contact and is caused by the SARS-coronavirus (CoV). However, there are no natural or synthetic compounds currently available that can inhibit SARS-CoV. We examined the inhibitory effects of 64 purified natural compounds against the activity of SARS helicase, nsP13, and the hepatitis C virus (HCV) helicase, NS3h, by conducting fluorescence resonance energy transfer (FRET)-based double-strand (ds) DNA unwinding assay or by using a colorimetry-based ATP hydrolysis assay.

View Article and Find Full Text PDF

Pervaporation is one of the most promising separation processes for the purification of ethanol. In this study, a composite hollow-fiber membrane with a thin polydimethylsiloxane (PDMS) active layer on a polyetherimide (PEI) macroporous support was used for pervaporative separation of ethanol produced by Saccharomyces cerevisiae from glucose fermentation broth. The pervaporation performance for ethanol/water binary mixtures was strongly dependent on the feed concentration and operating temperature for ethanol concentrations of 1-10%.

View Article and Find Full Text PDF

Background: Single-molecule detection (SMD) technologies are well suited for clinical diagnostic applications by offering the prospect of minimizing precious patient sample requirements while maximizing clinical information content. Not yet available, however, is a universal SMD-based platform technology that permits multiplexed detection of both nucleic acid and protein targets and that is suitable for automation and integration into the clinical laboratory work flow.

Methods: We have used a sensitive, specific, quantitative, and cost-effective homogeneous SMD method that has high single-well multiplexing potential and uses alternating-laser excitation (ALEX) fluorescence-aided molecule sorting extended to 4 colors (4c-ALEX).

View Article and Find Full Text PDF

We report a rare case of Williams syndrome accompanying moyamoya disease in whom postoperative global cerebral infarction occurred unpredictably. Williams syndrome is an uncommon hereditary disorder associated with the connective tissue abnormalities and cardiovascular disease. To our knowledge, our case report is the second case of Williams syndrome accompanying moyamoya disease.

View Article and Find Full Text PDF

Yeast immobilized on alginate beads produced a higher ethanol yield more rapidly than did free yeast cells under the same batch-fermentation conditions. The optimal fermentation conditions were 30°C, pH 5.0, and 10% initial glucose concentration with 2% sodium alginate beads.

View Article and Find Full Text PDF