Publications by authors named "Young-Tak Han"

We present a cost-effective and bandwidth-enhanced 64-Gbaud micro-intradyne coherent receiver based on hybrid integration of InP waveguide-photodetector (WG-PD) and silica planar lightwave circuit (PLC). InP waveguide-photodetector (WG-PD) arrays are simply chip-to-chip bonded and optically butt-coupled to a silica-based dual-polarization optical hybrid chip. Multiple flexible printed circuit boards are adapted for electrical RF and DC wirings, which provide low-cost integration and good RF performance of the receiver.

View Article and Find Full Text PDF

A high-speed waveguide photodetector has been successfully fabricated for an integrated coherent receiver. Dual laterally tapered structures are introduced for a spot-size converter. We optimize the responsivity and the polarization-dependent loss of the spot-size converter-integrated waveguide photodetector through the beam propagation method simulation.

View Article and Find Full Text PDF

We present a ten-channel distributed feedback laser diode array (DFB-LDA) developed for the transmission of 100-Gb/s (10 × 10 Gb/s) signals separated by an 8 nm wavelength grid at a center wavelength of 1.55 μm. For the fabrication of this type of laser array, a selective area growth (SAG) technique, electron-beam lithography, and a reverse-mesa ridge waveguide LD processing technique were adopted to offer a tailored gain spectrum to each channel, providing both accurate lasing-wavelength control and excellent single-mode yield over all channels, and reducing the fabrication cost and electrical and thermal resistances.

View Article and Find Full Text PDF

We present a cost-effective 25-Gb/s electro-absorption modulator integrated laser (EML) transmitter optical sub-assembly (TOSA) using all-in-one flexible printed circuit board (FPCB) wiring and a metal optical bench (MOB). For a low cost and high bandwidth TOSA, internal and external wirings and feed-through of the TOSA to transmit radio-frequency (RF) signal are configured all-in-one using the FPCB. The FPCB is extended from an exterior of the TOSA package up to an EML chip inside the package through the slit formed on a rear sidewall of the package and die-bonded on the MOB.

View Article and Find Full Text PDF

We have developed fully non-blocking optical matrix switches using a thermo-optic polymer 1 × 2 total-internal-reflection (TIR) switch as a unit switching element. The TIR switch consists of crossed multimode polymer waveguides and an offset heater electrode at the switching node. The fabricated 4 × 4 and 8 × 8 optical matrix switch chips show excellent switching performances.

View Article and Find Full Text PDF

We present and demonstrate a simple and cost-effective technique for improving the modulation bandwidth of electroabsorption-modulated laser (EML). This technique utilizes the RF resonance caused by the EML chip (i.e.

View Article and Find Full Text PDF