Publications by authors named "Young-Sun Nam"

Article Synopsis
  • Chronic graft-versus-host disease (cGVHD) is a serious complication following stem cell transplants that affects patients' quality of life, and current treatments often fail to help those resistant to steroids.* -
  • A clinical trial tested the safety and effectiveness of repeated infusions of mesenchymal stem cells (MSCs) in ten patients with severe, treatment-resistant cGVHD, showing promising results in symptom relief and improved quality of life.* -
  • After MSC treatment, 60% of patients had a positive response, with 20% achieving complete remission, while the infusions were well tolerated, and there was a notable reduction in inflammatory markers.*
View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSCs) are an attractive tool to treat graft-versus-host disease because of their unique immunoregulatory properties. Although human bone marrow-derived MSCs (BM-MSCs) were the most widely used MSCs in cell therapy until recently, MSCs derived from human umbilical cords (UC-MSCs) have gained popularity as cell therapy material for their ethical and noninvasive collection.

Aim: To investigate the difference in mechanisms of the immunosuppressive effects of UC-MSCs and BM-MSCs.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV)-positive extranodal NK/T-cell lymphoma is a rare and highly aggressive disease with a poor prognosis and strong resistance to anti-cancer drugs. Reactive oxygen species (ROS) are closely related to tumorigenesis and P-glycoprotein (P-gp) is highly expressed in various cancers. However, the exact relationship between ROS and P-gp in EBV-positive lymphoma remains unclear.

View Article and Find Full Text PDF

Oral mucositis (OM) is a common complication in cancer patients undergoing anticancer treatment. Despite the clinical and economic consequences of OM, there are no drugs available for its fundamental control. Here we show that high-mobility group box 1 (HMGB1), a "danger signal" that acts as a potent innate immune mediator, plays a critical role in the pathogenesis of OM.

View Article and Find Full Text PDF

Interleukin (IL)-10-producing type 1 regulatory T (Tr1) cells, which are Foxp3memory T lymphocytes, play important roles in peripheral immune tolerance. We investigated whether Tr1 cells exert immunoregulatory effects in a mouse model of acute graft-versus-host disease (GVHD). Mouse CD4 T cells were induced to differentiate in vitro into Tr1 cells using vitamin D3 and dexamethasone, and these donor-derived Tr1 cells were infused on the day of bone marrow transplantation.

View Article and Find Full Text PDF

Background: Cytomegalovirus(CMV)-related diseases are a serious cause of morbidity and mortality following hematopoietic stem cell transplantation (HSCT). CMV-specific cytotoxic T lymphocytes (CMV-CTLs) have been reported as an alternative to antiviral drugs that provide long-term CMV-specific immunity without major side effects. However, their application has been limited by the prolonged manufacturing process required.

View Article and Find Full Text PDF

Background/aims: Adoptive therapy with regulatory T (Treg) cells to prevent graft-versus-host disease (GVHD) would benefit from a strategy to improve homing to the sites of inflammation following hematopoietic stem cell transplantation (HSCT). Although donor-derived Treg cells have mainly been used in these models, third-party-derived Treg cells are a promising alternative for cell-based immunotherapy, as they can be screened for pathogens and cell activity, and banked for GVHD prevention. In this study, we explored major histocompatibility complex (MHC) disparities between Treg cells and conventional T cells in HSCT to evaluate the impact of these different cell populations on the prevention of acute GVHD, as well as survival after allogeneic transplantation.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) possess immunomodulatory properties and have potential, however, there have been conflicting reports regarding their effects in rheumatoid arthritis (RA), which causes inflammation and destruction of the joints. Through a comparative analysis of regulatory T (Treg) and IL-10-producing type 1 regulatory T (Tr1) cells, we hypothesized that Tr1 cells enhance the immunoregulatory functions of MSCs, and that a combinatorial approach to cell therapy may exert synergistic immunomodulatory effects in an experimental animal model of rheumatoid arthritis (RA). A combination of MSCs and Tr1 cells prevented the development of destructive arthritis compared to single cell therapy.

View Article and Find Full Text PDF

Chronic graft-versus-host disease (cGVHD) is a common complication following allogeneic hematopoietic stem cell transplantation (HSCT), which is characterized by autoimmune like inflammatory responses and reduced levels of regulatory T cells (Tregs). Recently, the use of low-dose IL-2 has been reported to selectively increase Tregs and therefore facilitate immune regulation and promote clinical improvements in cGVHD patients. In this report, we describe the case of a cGVHD patient who was treated with daily low-dose IL-2 therapy.

View Article and Find Full Text PDF
Article Synopsis
  • Interleukin (IL)-21 is a cytokine being explored for cancer immunotherapy, but its clinical effectiveness has been limited.
  • Researchers proposed using genetically modified mesenchymal stem cells (MSCs) to deliver high levels of IL-21 directly to tumors, aiming to enhance antitumor responses.
  • In mouse models, IL-21/MSCs improved survival and delayed tumor development compared to untreated controls, primarily by boosting immune cell activity and inhibiting suppressor cells.
View Article and Find Full Text PDF

Therapeutic effects of combined cell therapy with mesenchymal stem cells (MSCs) and regulatory T cells (Treg cells) have recently been studied in acute graft-versus-host-disease (aGVHD) models. However, the underlying, seemingly synergistic mechanism behind combined cell therapy has not been determined. We investigated the origin of Foxp3+ Treg cells and interleukin 17 (IL-17+) cells in recipients following allogeneic bone marrow transplantation (allo-BMT) to identify the immunological effects of combined cell therapy.

View Article and Find Full Text PDF

Establishing mixed chimerism is a promising approach for inducing donor-specific transplant tolerance. The establishment and maintenance of mixed chimerism may enable long-term engraftment of organ transplants while minimizing the use of immunosuppressants. Several protocols for inducing mixed chimerism have been reported; however, the exact mechanism underlying the development of immune tolerance remains to be elucidated.

View Article and Find Full Text PDF

Graft-versus-host disease (GVHD) is a major complication associated with allogeneic hematopoietic stem cell transplantation. Despite the prominent role of the adaptive immune system, the importance of controlling the innate immune system in the pathogenesis of GVHD has recently been rediscovered. High-mobility group box 1 (HMGB1) is a crucial damage-associated molecular pattern signal that functions as a potent innate immune mediator in GVHD.

View Article and Find Full Text PDF

Aim: To investigate the effects of mesenchymal stem cells (MSCs) on dextran sulfate sodium-induced inflammatory bowel disease (IBD).

Methods: C57BL/6 mice were fed 3.5% (g/L) dextran sulfate sodium.

View Article and Find Full Text PDF

Interleukin (IL) 21 plays a key role in the development of acute graft-versus-host disease (GVHD) after allogeneic bone marrow transplantation. Therapeutic manipulation of IL-21 activity may improve acute GVHD during the early-posttransplant period. We investigated the mechanisms regulating T- and B-cells during IL-21 blockade in acute GVHD.

View Article and Find Full Text PDF

Establishment of mixed chimerism is an ideal approach to induce donor-specific tolerance while expanding its potential in various clinical settings. Despite the developments in partial conditioning regimens, improvements are still needed in reducing toxicity and bone marrow transplantation-related complications. Recently, cell-based therapies, including mesenchymal stem cells (MSCs), have been incorporated in establishing noncytoreductive mixed chimerism protocols; however, its efficacy is only partial and shows reversed immunosuppressive properties.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) are seen as an ideal source of cells to induce graft acceptance; however, some reports have shown that MSCs can be immunogenic rather than immunosuppressive. We speculate that the immunomodulatory effects of regulatory T cells (Tregs) can aid the maintenance of immunoregulatory functions of MSCs, and that a combinatorial approach to cell therapy can have synergistic immunomodulatory effects on allograft rejection. After preconditioning with Fludarabine, followed by total body irradiation and anti-asialo-GM-1(ASGM-1), tail skin grafts from C57BL/6 (H-2k(b)) mice were grafted onto the lateral thoracic wall of BALB/c (H-2k(d)) mice.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have emerged as a therapeutic approach in a range of medical fields, including regenerative medicine, cancer, autoimmune diseases, and inflammatory diseases, because of their unique properties of tissue repair and major histocompatibility complex-unmatched immunosuppression. Because both in vitro and in vivo findings demonstrate that MSCs possess potent immunoregulatory functions, there has been increasing interest in the role of MSCs in allogeneic hematopoietic stem cell transplantation, especially in the prevention and treatment of graft-versus-host disease (GVHD). GVHD is a major cause of transplantation-related mortality, and conventional immunosuppressants frequently fail to treat patients suffering from GVHD.

View Article and Find Full Text PDF