Despite the development of multidimensional state-of-the-art electrode materials for constructing better lithium metal anodes (LMAs), the key factors influencing the electrochemical performance of LMAs are still poorly understood. Herein, it is demonstrated that the local lithium ion concentration at the interface between the electrode and electrolyte exerts significant influence on the electrochemical performance of LMAs. The local ion concentration is multiplied by introducing pseudocapacitive nanocarbons (PNCs) containing numerous heteroatoms, because PNCs can store large numbers of lithium ions in a pseudocapacitive manner, and promote the formation of an electrochemical double layer.
View Article and Find Full Text PDFThe production of rechargeable batteries is rapidly expanding, and there are going to be new challenges in the near future about how the potential environmental impact caused by the disposal of the large volume of the used batteries can be minimized. Herein, a novel strategy is proposed to address these concerns by applying biodegradable device technology. An eco-friendly and biodegradable sodium-ion secondary battery (SIB) is developed through extensive material screening followed by the synthesis of biodegradable electrodes and their seamless assembly with an unconventional biodegradable separator, electrolyte, and package.
View Article and Find Full Text PDFAlthough the lithium-metal anode (LMA) can deliver a high theoretical capacity of ≈3860 mAh g at a low redox potential of -3.040 V (vs the standard hydrogen electrode), its application in rechargeable batteries is hindered by the poor Coulombic efficiency and safety issues caused by dendritic metal growth. Consequently, careful electrode design, electrolyte engineering, solid-electrolyte interface control, protective layer introduction, and other strategies are suggested as possible solutions.
View Article and Find Full Text PDFDespite the recent attention for Li metal anode (LMA) with high theoretical specific capacity of ≈3860 mA h g , it suffers from not enough practical energy densities and safety concerns originating from the excessive metal load, which is essential to compensate for the loss of Li sources resulting from their poor coulombic efficiencies (CEs). Therefore, the development of high-performance LMA is needed to realize anode-minimized Li metal batteries (LMBs). In this study, high-performance LMAs are produced by introducing a hierarchically nanoporous assembly (HNA) composed of functionalized onion-like graphitic carbon building blocks, several nanometers in diameter, as a catalytic scaffold for Li-metal storage.
View Article and Find Full Text PDFA comprehensive study is conducted on hard carbon (HC) series samples by tuning the graphitic local microstructures systematically as an anode for SIBs in both carbonate- (CBE) and glyme-based electrolytes (GBE). The results reveal more detailed charge storage characters of HCs on the LVP section. 1) The LVP capacity is closely related to the prismatic surface area to the basal plane as well as the bulk density, regardless of electrolyte systems.
View Article and Find Full Text PDFThe non-aqueous asymmetric lithium ion hybrid capacitor (LIHC) is a tactical energy storage device composed of a faradic and non-faradic electrode pair, which aims to achieve both high energy and great power densities. On the other hand, the different types of electrode combinations cause severe imbalances in energy and power capabilities, leading to poor electrochemical performance. Herein, waste pinecone-derived hierarchically porous pyropolymers (WP-HPPs) were fabricated as a surface-driven pseudocapacitive electrode, which has the advantages of both faradic and non-faradic electrodes.
View Article and Find Full Text PDFCalcium-ion batteries (CIBs) are considered to be promising next-generation energy storage systems because of the natural abundance of calcium and the multivalent calcium ions with low redox potential close to that of lithium. However, the practical realization of high-energy and high-power CIBs is elusive owing to the lack of suitable electrodes and the sluggish diffusion of calcium ions in most intercalation hosts. Herein, it is demonstrated that calcium-ion intercalation can be remarkably fast and reversible in natural graphite, constituting the first step toward the realization of high-power calcium electrodes.
View Article and Find Full Text PDFThe high volumetric energy density of rechargeable Mg batteries (RMBs) gives them a competitive advantage over current Li ion batteries, which originates from the high volumetric capacity (∼3833 mA h cm) of bivalent Mg metal anodes (MMAs). On the other hand, despite their importance, there are few reports on research strategies to improve the electrochemical performance of MMAs. This paper reports that catalytic carbon nanosubstrates rather than metal-based substrates, such as Mo, Cu, and stainless steel, are essential in MMAs to improve the electrochemical performance of RMBs.
View Article and Find Full Text PDFNanoporous carbon, including redox-active functional groups, can be a promising active electrode material (AEM) as a positive electrode for lithium-ion batteries owing to its high electrochemical performance originating from the host-free surface-driven charge storage process. This study examined the effects of the nanopore size on the pseudocapacitance of the nanoporous carbon materials using nanopore-engineered carbon-based AEMs (NE-C-AEMs). The pseudocapacitance of NE-C-AEMs was intensified, when the pore diameter was ≥2 nm in a voltage range of 1.
View Article and Find Full Text PDFAnode-free sodium metal batteries (AF-SMBs) can deliver high energy and enormous power, but their cycle lives are still insufficient for them to be practical as a power source in modern electronic devices and/or grid systems. In this study, a nanohybrid template based on high aspect-ratio silver nanofibers and nitrogen-rich carbon thin layers as a core-shell structure is designed to improve the Coulombic efficiency (CE) and cycling performance of AF-SMBs. The catalytic nanohybrid templates dramatically reduce the voltage overshooting caused by metal nucleation to one-fifth that of a bare Al foil electrode (≈6 mV vs ≈30 mV), and high average CE values of >99% are achieved over a wide range of current rates from 0.
View Article and Find Full Text PDFWe report a pyroprotein seed layer (PSL, ∼100 nm in thickness)-coated Cu foil electrode (PSL-Cu) demonstrating highly reversible Na metal storage behavior with a mean Coulombic efficiency (CE) of ∼99.96% over 300 cycles in a glyme-based electrolyte. Via a synergistic effect with the electrolyte, the carbonaceous thin film containing numerous nucleophilic active sites guides the homogeneous Na metal deposition/stripping process with the formation of numerous catalytic seeds, resulting in remarkably stable cycling and a low Na metal nucleation overpotential of ∼10 mV.
View Article and Find Full Text PDFNa-ion cointercalation in the graphite host structure in a glyme-based electrolyte represents a new possibility for using carbon-based materials (CMs) as anodes for Na-ion storage. However, local microstructures and nanoscale morphological features in CMs affect their electrochemical performances; they require intensive studies to achieve high levels of Na-ion storage performances. Here, pyrolytic carbon nanosheets (PCNs) composed of multitudinous graphitic nanocrystals are prepared from renewable bioresources by heating.
View Article and Find Full Text PDFNanoscale Res Lett
February 2018
The macro/microstructures of carbon-based electrode materials for supercapacitor applications play a key role in their electrochemical performance. In this study, hierarchically macroporous graphitic nanowebs (HM-GNWs) were prepared from bacterial cellulose by high-temperature heating at 2400 °C. The HM-GNWs were composed of well-developed graphitic nanobuilding blocks with a high aspect ratio, which was entangled as a nanoweb structure.
View Article and Find Full Text PDFNanohybrid anode materials for Na-ion batteries (NIBs) based on conversion and/or alloying reactions can provide significantly improved energy and power characteristics, while suffering from low Coulombic efficiency and unfavorable voltage properties. An NIB paper-type nanohybrid anode (PNA) based on tin sulfide nanoparticles and acid-treated multiwalled carbon nanotubes is reported. In 1 m NaPF dissolved in diethylene glycol dimethyl ether as an electrolyte, the above PNA shows a high reversible capacity of ≈1200 mAh g and a large voltage plateau corresponding to a capacity of ≈550 mAh g in the low-voltage region of ≈0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2017
Advanced nanostructured hybrid materials can help us overcome the electrochemical performance limitations of current energy storage devices. In this study, three-dimensional porous carbon nanowebs (3D-CNWs) with numerous included orthorhombic NbO (T-NbO) nanoparticles were fabricated using a microbe-derived nanostructure. The 3D-CNW/T-NbO nanocomposites showed an exceptionally stable long-term cycling performance over 70 000 cycles, a high reversible capacity of ∼125 mA h g, and fast Li-ion storage kinetics in a coin-type two-electrode system using Li metal.
View Article and Find Full Text PDFThermally reducible pyroprotein-based electronic textiles (e-textiles) are fabricated using graphene oxide and a pyroprotein such as cocoon silk and spider web without any chemical agents. The electrical conductivity of the e-textile is 11.63 S cm , which is maintained even in bending, washing, and temperature variation.
View Article and Find Full Text PDFAdvanced design of nanostructured functional carbon materials for use in sustainable energy storage systems suffers from complex fabrication procedures and the use of special methods and/or expensive precursors, limiting their practical applications. In this study, nanoporous carbon nanosheets (NP-CNSs) containing numerous redox-active heteroatoms (C/O and C/N ratios of 5.5 and 34.
View Article and Find Full Text PDFPyroprotein-based carbon nanoplates are fabricated from self-assembled silk proteins as a versatile platform to examine sodium-ion storage characteristics in various carbon environments. It is found that, depending on the local carbon structure, sodium ions are stored via chemi-/physisorption, insertion, or nanoclustering of metallic sodium.
View Article and Find Full Text PDFSilk proteins are of great interest to the scientific community owing to their unique mechanical properties and interesting biological functionality. In addition, the silk proteins are not burned out following heating, rather they are transformed into a carbonaceous solid, pyroprotein; several studies have identified potential carbon precursors for state-of-the-art technologies. However, no mechanism for the carbonization of proteins has yet been reported.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
December 2014
A hierarchically porous carbon (HPC)/polyaniline (PANI) hybrid electrode was prepared by the polymerization of PANI on the surface of the HPC via rapid-mixing polymerization. The surface morphologies and chemical composition of the HPC/PANI hybrid electrode were characterized using transmission electron microscopy and X-ray photoelectron spectroscopy (XPS), respectively. The surface morphologies and XPS results for the HPC, PANI and HPC/PANI hybrids indicate that PANI is coated on the surface of HPC in the HPC/PANI hybrids which have two different nitrogen groups as a benzenoid amine (-NH-) peak and positively charged nitrogen (N+) peak.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
December 2014
Hybrid electrodes of hierarchical porous carbon (HPC) and manganese oxide (MnO2) were synthesized using a fast surface redox reaction of potassium permanganate under facile immersion methods. The HPC/MnO2 hybrids had a number of micropores and macropores and the MnO2 nanoparticles acted as a pseudocapacitive material. The synergistic effects of electric double-layer capacitor (EDLC)-induced capacitance and pseudocapacitance brought about a better electrochemical performance of the HPC/MnO2 hybrid electrodes compared to that obtained with a single component.
View Article and Find Full Text PDF