Publications by authors named "Young-Shik Cho"

Lightweight structural materials are commonly used as effective fillers for advanced composites with high toughness. This study focused on enhancing the toughness of direct-spun carbon nanotube yarns (CNTYs) by controlling the micro-textural structure using a water-gap-based direct spinning. Drawing inspiration from the structural features of natural spider silk fibroin, characterized by an α-helix in the amorphous region and β-sheet in the crystalline region, multiscale bundles within CNTYs are reorganized into a unique nano-coil-like structure.

View Article and Find Full Text PDF

In this study, a range of carbon nanotube yarn (CNTY) architectures was examined and controlled by chemical modification to gain a deeper understanding of CNTY load-bearing systems and produce lightweight and superstrong CNTYs. The architecture of CNTY, which has polymer layers surrounding a compact bundle without hampering the original state of the CNTs in the bundle, is a favorable design for further chemical cross-linking and for enhancing the load-transfer efficiency, as confirmed by in situ Raman spectroscopy under a stress load. The resulting CNTY exhibited excellent mechanical performance that exceeded the specific strength of the benchmark, high-performance fibers.

View Article and Find Full Text PDF

Super strong fibers, such as carbon or aramid fibers, have long been used as effective fillers for advanced composites. In this study, the highest tensile strength of 5.5 N tex for carbon nanotube yarns (CNTYs) is achieved by controlling the micro-textural structure through a facile and eco-friendly bundle engineering process in direct spinning without any post-treatment.

View Article and Find Full Text PDF
Article Synopsis
  • - The study presents magnetically responsive composite robots that can swim in two different modes, allowing them to move efficiently in water and perform coordinated tasks as a group.
  • - These robots have a unique structure made from carbon nanotube yarn and magnetic polymer composite, which gives them a lightweight yet strong design similar to biological musculoskeletal systems.
  • - The ability of these robots to work together enhances their functionality for various applications, such as cleaning up microplastics, managing microfluidic systems, and transporting pharmaceuticals.
View Article and Find Full Text PDF

With the continuous development of flexible and wearable thermoelectric generators (TEGs), high-performance materials and their integration into convenient wearable devices have to be considered. Herein, we have demonstrated highly aligned wet-spun carbon nanotube (CNT) fibers by optimizing the liquid crystalline (LC) phase via hydrochloric acid purification. The liquid crystalline phase facilitates better alignment of CNTs during fiber extrusion, resulting in the high power factor of 2619 μW m K, which surpasses those of the dry-spun CNT yarns.

View Article and Find Full Text PDF

Li-O batteries have attracted considerable attention for several decades due to their high theoretical energy density (>3400 Wh/kg). However, it has not been clearly demonstrated that their actual volumetric and gravimetric energy densities are higher than those of Li-ion batteries. In previous studies, a considerable quantity of electrolyte was usually employed in preparing Li-O cells.

View Article and Find Full Text PDF

N-doped hierarchical porous carbon with uniaxially packed carbon nanotubes (CNTs) was prepared by copolymer single-nozzle electrospinning, carbonization, and KOH activation. Densely and uniaxially aligned CNTs improve the electrical conductivity and act as a structural scaffold, enhancing the electrochemical performance of the anode. A partially graphitized N-doped carbon shell, which has a rapid ion accessible pore network and abundant redox sites, was designed to expand the redox sites from the surface of the material to the whole material, including the inner part.

View Article and Find Full Text PDF

Future electronics applications such as wearable electronics depend on the successful construction of energy-storage devices with superior flexibility and high electrochemical performance. However, these prerequisites are challenging to combine: External forces often cause performance degradation, whereas the trade-off between the required nanostructures for strength and electrochemical performance only results in diminished energy storage. Herein, a flexible supercapacitor based on tannic acid (TA) and carbon nanotubes (CNTs) with a unique nanostructure is presented.

View Article and Find Full Text PDF

The Hansen solubility parameters (HSPs) of as-produced multi-walled carbon nanotubes (APMWCNTs) were determined by means of the inverse gas chromatography (IGC) technique. Due to non-homogeneous surfaces of the APMWCNTs arising from defects and impurities, it was necessary to establish adequate working conditions for determining the HSPs of the CNTs. We then obtained the HSPs of the APMWCNTs and compared these results with earlier reports as determined by using sedimentation and molecular dynamics simulation methods.

View Article and Find Full Text PDF

Purpose: Tuberculosis (TB) is a major infectious disease and is responsible for two million deaths annually. For the identification and quantitation of Mycobacterium tuberculosis (M. tuberculosis), a causative agent of TB, a sandwich enzyme-linked immunosorbent assay (ELISA) against the MPT64 protein of M.

View Article and Find Full Text PDF

Objectives: The aim of this study was to develop an immunochromatographic assay (ICA) for the detection of influenza A (H1N1) pdm09 virus infection.

Materials And Methods: Several monoclonal antibodies against influenza A (H1N1) pdm09 virus were generated and an ICA (pdm09-ICA) was developed for the rapid and specific detection of influenza A (H1N1) pdm09 virus infection. The specificity and sensitivity of the developed assay were compared with that of hemagglutination assay and real-time reverse-transcription polymerase chain reaction (rRT-PCR).

View Article and Find Full Text PDF

Background: Chagas' disease is caused by Trypanosoma cruzi, a protozoan parasite, which is transmitted by blood-sucking bugs or through blood transfusion or organ transplantation. It is endemic in Central and South America. The objective of this study was to compare the performance of immunochromatographic SD Bioline Chagas Ab Rapid (Standard Diagnostics, Korea) with three immunochromatographic kits for the detection of antibodies to T.

View Article and Find Full Text PDF

This study was performed to determine the feasibility of using whole serum to detect antibodies to canine parvovirus (CPV) under nonlaboratory conditions and to evaluate the performance characteristics of an immunochromatography assay kit. Precise detection of levels of antibody against CPV in puppies can be used to determine a vaccination schedule, because maternal antibodies frequently result in the failure of protective vaccination, and can also be used to determine the antibody levels of infected puppies. Several methods for the titration of CPV antibodies have been reported, including the hemagglutination inhibition (HI) assay, which is considered the "gold standard.

View Article and Find Full Text PDF