We propose dual-wavelength Fourier ptychography for topographic measurement. To extend the axial measurement range, a single light-emitting diode (LED) and two appropriate bandpass filters are employed. This provides a speckle-free phase image, and reduces the possibility of a systematic error, which yields a high-quality topographic image.
View Article and Find Full Text PDFWe propose a new low-coherence interferometry system for dual-wavelength off-axis digital holography. By utilizing diffraction gratings, two beams with narrower bandwidths and different center wavelengths could be filtered in a single light-emitting diode. The characteristics of the system are analytically determined to extend the coherence length and field-of-view enough for off-axis configuration.
View Article and Find Full Text PDFWe propose a measurement system using dual-wavelength digital holography and low-coherence interferometry to measure micro- and nanostructure surface heights. To achieve an extended axial step-measurement range and better image quality, a single light-emitting diode generates two distinct light sources by filtering different center wavelengths and narrower bandwidths. The system can measure surface profile with higher step heights and lower speckle noise in a large field-of-view.
View Article and Find Full Text PDFWe introduce an image upscaling method that reduces bit errors caused by Nyquist apertures. Nyquist apertures used for higher storage densities generate optical aberrations and degrade the quality of the image that is recorded on the medium. Here, to correct the bit errors caused by the Nyquist aperture, an image upscaling method is used to restore the degraded image in the enhanced spatial frequency domain using its point spread function (PSF) as a restoration filter.
View Article and Find Full Text PDFA novel fabrication method for a two-dimensional photonic crystal color filter based on guided mode resonance is proposed. An amorphous silicon layer deposited through the low-temperature plasma enhanced chemical vapor deposition (PECVD) process is patterned into two-dimensional structures using low-cost nanoimprint lithography. It is then effectively crystallized using multi-shot excimer laser annealing at low energy.
View Article and Find Full Text PDFA novel concept for reflective displays that uses two-dimensional photonic crystals with subwavelength gratings is introduced. A solar-powered reflective display with photonic crystal color filters was analyzed by a theoretical approach. We fabricated the photonic crystal color filters on a glass substrate by using low-cost nanoimprint lithography and multi-scan excimer laser annealing to produce RGB color filters through a single patterning process.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
October 2010
We propose an image-resolution upscaling method for compact imaging systems. The image resolution is calculated using the resolving power of the optics and the pixel size of a digital image sensor. The resolution limit of the compact imaging system comes from its size and the number of allowed lenses.
View Article and Find Full Text PDFWe report on the realization of solid immersion lens (SIL)-based near-field (NF) optics with an annular aperture, which is targeted to achieve high optical resolution. A numerical aperture (NA) = 1.84 hemisphere SIL-optics with an annular aperture achieves higher optical resolution than the conventional NA = 2.
View Article and Find Full Text PDFWe present a description of a multiple excitation of localized surface plasmons (LSPs) from an Au nanoparticle (NP) array-based ridge waveguide to create a small optical spot size with an extremely strong intensity. Using a numerical finite-difference time-domain method, we find that the optical intensity of the ridge waveguide with an Au NP array is about 700% higher than that of a simple ridge waveguide. Moreover, the spacing between the NPs plays an important role in the multiple excitation of LSPs.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
August 2009
Currently, data recording density in cover-layer-protected near-field-recording (NFR) and multiple-recording layered NFR optical data storage technology is limited by the difficulty in obtaining high-refractive-index cover layer materials. In addition, with the exception of improved resolution, the higher the numerical aperture (NA), the poorer the optical characteristics. However, in this study, we present novel cover-layer-protected solid immersion lens (SIL)-based NFR optics that provide superior optical performance with higher recording density, greatly enhanced focal depth, and less sensitivity to near-field air-gap-distance variation by modulating the amplitude and phase in the entrance pupil using annular pupil zones.
View Article and Find Full Text PDFWe analyzed the behavior of the electric field in a focal plane consisting of a solid immersion lens (SIL), an air gap, and a measurement sample for radially polarized illumination in SIL-based near-field optics with an annular aperture. The analysis was based on the Debye diffraction integral and multiple beam interference. For SIL-based near-field optics whose NA is higher than unity, radially polarized light generates a smaller beam spot on the bottom surface of a SIL than circularly polarized light; however, the beam spot on the measurement sample is broadened with a more dominant transverse electric field.
View Article and Find Full Text PDFReflective color filters using two-dimensional photonic crystals based on sub-wavelength gratings were proposed and constructed. Using low-cost nanoimprint lithography, an amorphous silicon layer was deposited through the low-temperature PECVD process and patterned into two-dimensional structures. The isolated amorphous silicon patterns were readily crystallized using a multi-shot excimer laser annealing at low energy.
View Article and Find Full Text PDFThis paper analyzes the effects due to the angular motion of a small-sized imaging system equipped with an optical image stabilizer (OIS) on image quality. Accurate lens moving distances for the OIS required to compensate the ray distortion induced by the angular motion are determined. To calculate the associated modulation transfer function, the integrated and the compensated point spread functions are defined.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
November 2008
Diffractive optical elements (DOEs) are often used to improve the performance of optical systems. However, when a blazed DOE is machined, shape errors can be generated in the discontinuity region of the DOE due to the finite radius of the processing tool. We simulated the effects of this shape error on the optical path and modulation transfer function (MTF) in a hybrid lens for a compact camera module.
View Article and Find Full Text PDFWe analyze the effects of optical variables, such as illumination state, focal position variation, near-field air-gap height, and refractive index mismatch, in immersion lens-based near-field optics on the resultant field propagation characteristics, including spot size, focal depth, and aberrations. First, to investigate the general behaviors of various incident polarization states, focused fields near the focal planes in simple two- or three-layered media structures are calculated under considerations of refractive index mismatch, geometric focal position variations, and air-gap height in a multi-layered medium. Notably, for solid immersion near-field optics, although purely TM polarized illumination generates a stronger and 15% smaller beam spot size in the focal region than in the case of circularly polarized incident light, the intensity of the focused field decreases sharply from the interface between air and the third medium.
View Article and Find Full Text PDFWe propose a resolution enhancement method for mobile small f-number compact imaging systems based on wavefront coding and superresolution image processing. Wavefront coding increases the focus depth of an optical system and produces point spread functions (PSFs) with similar characteristics at different field and defocus positions. The designed target wavefront is realized as a combination of wavefront errors of each rotationally symmetric lens, without including an additional phase plate.
View Article and Find Full Text PDFDiffractive optical elements (DOEs) are key components in the miniaturization of optical systems because of their planarity and extreme thinness. We demonstrate the fabrication of DOEs by use of gray-scale photolithography with a high-energy-beam sensitive glass photomask. We obtained DOE lenses with continuous phase profiles as small as 800 microm in diameter and 5.
View Article and Find Full Text PDF