Publications by authors named "Young-Mi Bahk"

This study showcases the conformal geometries of van der Waals materials with metallic structures utilizing viscoelastic support layers. Mechanically exfoliated nanometer-thick graphite flakes were transferred onto metal structures with various side slopes using two different polymers: polycarbonate (PC) and polyethylene (PE). We proposed a morphology-based evaluation of the macroscale conformity that can contribute to the selection of a proper support layer.

View Article and Find Full Text PDF

Use of a template triggers an epitaxial interaction with the depositing material during synthesis. Recent studies have demonstrated that two-dimensional tellurium (tellurene) can be directionally oriented when grown on transition metal dichalcogenide (TMD) templates. Specifically, employing a T-phase TMD, such as WTe, restricts the growth direction even further due to its anisotropic nature, which allows for the synthesis of well-oriented tellurene films.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research focuses on using terahertz waves to detect metal nanoparticles, offering efficient and nondestructive methods for analyzing chemical and biological samples without the need for labeling.
  • The combination of optical tweezing and terahertz spectroscopy enables precise positioning and high sensitivity for detecting small molecules with specific vibrational modes in the terahertz range.
  • This innovative approach has successfully identified gold nanoparticles, laying the groundwork for future applications in biomolecular detection using terahertz spectroscopy.
View Article and Find Full Text PDF

We investigate conducting characteristics of biochar derived from the pyrolysis of a paper at terahertz frequencies. Paper is annealed under temperatures ranging from 600 to 1000 °C to modify structural and electrical properties. We experimentally observe that the terahertz conductivity increases above 10 S/m as the annealing temperature increases up to 800 °C.

View Article and Find Full Text PDF

We report on a prototypical study of the detection of microplastic embedded in table salts by using terahertz time-domain spectroscopy. In the experiment, high-density polyethylene (HDPE) of sizes from 150 to 400 μm are used as a representative microplastic and mixed with table salts. Analyzing terahertz transmittance with an effective medium model, we extract various optical properties such as refractive index, absorption coefficient, and real/imaginary parts of the dielectric constant of the mixture.

View Article and Find Full Text PDF

One of the most straightforward methods to actively control optical functionalities of metamaterials is to apply mechanical strain deforming the geometries. These deformations, however, leave symmetries and topologies largely intact, limiting the multifunctional horizon. Here, we present topology manipulation of metamaterials fabricated on flexible substrates by mechanically closing/opening embedded nanotrenches of various geometries.

View Article and Find Full Text PDF

Copper is a low-cost material compared to silver and gold, having high reflectivity in the near infrared spectral range as well as good electrical and thermal conductivity. Its properties make it a good candidate for metal-based low-cost multilayer thin-film devices and optical components. However, its high reflectance in the devices is reduced because copper is easily oxidized.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

Various material properties change considerably when material is thinned down to nanometer thicknesses. Accordingly, researchers have been trying to obtain homogeneous thin films with nanometer thickness but depositing homogeneous few nanometers thick gold film is challenging as it tends to form islands rather than homogenous film. Recently, studies have revealed that treating the substrate with an organic buffer, (3-mercaptopropyl) trimethoxysilane (MPTMS) enables deposition of ultra-thin gold film having thickness as low as 5 nm.

View Article and Find Full Text PDF

Arrays of van der Waals gaps were manufactured by synthesizing the vertically aligned graphene layer stacked between two copper (Cu) catalytic films. The Cu-graphene-Cu laminated structure was obtained by directly synthesizing graphene on a patterned Cu film followed by depositing a second copper layer for optical measurements. The synthesis of graphene on the Cu surface was optimized by adjusting the synthesis temperatures and pre-annealing time using plasma enhanced chemical vapor deposition (PECVD).

View Article and Find Full Text PDF

We report on improvement of sensitivity for molecular detection utilizing terahertz time domain spectroscopy. Based on confining and enhancing electromagnetic field with metallic nanoslot antennas, we additionally employ monolayer graphene sheet whose edge and hydrophobic surface nature lead to increase detecting performance. Terahertz transmittance in monolayer graphene/metallic nanoslot structure exhibits more unambiguous change after lactose molecules are attached, compared to that in metallic nanoslot structure without monolayer graphene.

View Article and Find Full Text PDF

An electromagnon in the magnetoelectric (ME) hexaferrite Ba_{0.5}Sr_{2.5}Co_{2}Fe_{24}O_{41} (Co_{2}Z-type) single crystal is identified by time-domain terahertz (THz) spectroscopy.

View Article and Find Full Text PDF

Most semiconductors have surface dynamics radically different from its bulk counterpart due to surface defect, doping level, and symmetry breaking. Because of the technical challenge of direct observation of the surface carrier dynamics, however, experimental studies have been allowed in severely shrunk structures including nanowires, thin films, or quantum wells where the surface-to-volume ratio is very high. Here, we develop a new type of terahertz (THz) nanoprobing system to investigate the surface dynamics of bulk semiconductors, using metallic nanogap accompanying strong THz field confinement.

View Article and Find Full Text PDF

Quantum tunnelling becomes inevitable as gap dimensions in metal structures approach the atomic length scale, and light passing through these gaps can be used to examine the quantum processes at optical frequencies. Here, we report on the measurement of the tunnelling current through a 3-Å-wide metal-graphene-metal gap using terahertz time-domain spectroscopy. By analysing the waveforms of the incident and transmitted terahertz pulses, we obtain the tunnelling resistivity and the time evolution of the induced current and electric fields in the gap and show that the ratio of the applied voltage to the tunnelling current is constant, i.

View Article and Find Full Text PDF

We investigate field enhancement inside metal-insulator-metal gaps with asymmetric thicknesses and tapered shapes in the terahertz regime. Finite-difference time-domain simulations were conducted for calculation of field enhancement factor. The calculation indicates that for asymmetric sample, field enhancement increases proportionally with the decrease of the thinner of the two metal film thicknesses surrounding the gap.

View Article and Find Full Text PDF

Metal-graphene-metal hybrid structures allow angstrom-scale van der Waals gaps, across which electron tunneling occurs. We squeeze terahertz electromagnetic waves through these λ/10 000 000 gaps, accompanied by giant field enhancements. Unprecedented transmission reduction of 97% is achieved with the transient voltage across the gap saturating at 5 V.

View Article and Find Full Text PDF

Quantum tunneling in plasmonic nanostructures has presented an interesting aspect of incorporating quantum mechanics into classical optics. However, the study has been limited to the subnanometer gap regime. Here, we newly extend quantum plasmonics to gap widths well over 1 nm by taking advantage of the low-frequency terahertz regime.

View Article and Find Full Text PDF

We theoretically study the transmission reduction of light passing through absorptive molecules embedded in a periodic metal slot array in a near infrared wavelength regime. From the analytically solved transmitted light, we present a simple relation given by the attenuation length of light at the resonance wavelength of the slot antennas with respect to the spectral width of the resonant transmission peak. This relation clearly explains that the control of the transmission reduction even with very low absorptive materials is possible.

View Article and Find Full Text PDF

We present a new and versatile technique of self-assembly lithography to fabricate a large scale Cadmium selenide quantum dots-silver nanogap metamaterials. After optical and electron microscopic characterizations of the metamaterials, we performed spatially resolved photoluminescence transmission measurements. We obtained highly quenched photoluminescence spectra compared to those from bare quantum dots film.

View Article and Find Full Text PDF

We report near-field and far-field measurements of transmission through nanometer-sized gaps at near-infrared frequencies with varying the gap size from 1 nm to 10 nm. In the far-field measurements, we excluded direct transmission on the metal film surface via interferometric method. Kirchhoff integral formalism was used to relate the far-field intensity to the electric field at the nanogaps.

View Article and Find Full Text PDF

We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, 'nonresonant laser-pulse-induced photon drag currents' appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism.

View Article and Find Full Text PDF

Molecules have extremely small absorption cross sections in the terahertz range even under resonant conditions, which severely limit their detectability, often requiring tens of milligrams. We demonstrate that nanoantennas tailored for the terahertz range resolves the small molecular cross section problem. The extremely asymmetric electromagnetic environment inside the slot antenna, which finds the electric field being enhanced by thousand times with the magnetic field changed little, forces the molecular cross section to be enhanced by >10(3) accompanied by a colossal absorption coefficient of ~170,000 cm(-1).

View Article and Find Full Text PDF

We studied the electromagnetic interaction between two asymmetric terahertz nano resonators, rectangular holes which have a few hundred micron lengths but nanoscale widths. We report that the dominant resonant transmission of the structures can be modulated by the horizontal distance between two rectangles due to the different oscillation strength of the asymmetric coupling at two different resonance frequencies. Our results are significant for an optimum design of rectangular holes in terahertz frequency regime for applications such as sensitive nanoparticle detection and terahertz filters.

View Article and Find Full Text PDF

A pinch harmonic (or guitar harmonic) is a musical note produced by lightly pressing the thumb of the picking hand upon the string immediately after it is picked [J. Chem. Educ.

View Article and Find Full Text PDF

Nanoscale metallic barriers embedded in terahertz (THz) slot antennas are shown to provide unprecedented control of the transition state arising at the crossover between the full- and half-wavelength resonant modes of such antennas. We demonstrate strong near-field coupling between two paired THz slot antennas separated by a 5 nm wide nanobarrier, almost fully inducing the shift to the resonance of the double-length slot antenna. This increases by a factor of 50 the length-scale needed to observe similar coupling strengths in conventional air-gap antennas (around 0.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: