Publications by authors named "Young-Kwang Lee"

Humans face a severe shortage of fresh water due to economic growth, climate change, overpopulation, and overutilization. Atmospheric water harvesting (AWH) is a promising solution where clean water is collected from the air through various approaches, including dropwise condensation. However, designing surfaces that balance rapid condensation with efficient water removal is challenging.

View Article and Find Full Text PDF

Tangent flow-driven ultrafiltration (TF-UF) is an efficient isolation process of milk exosomes without morphological deformation. However, the TF-UF approach with micro-ultrafiltration SiN membrane filters suffers from the clogging and fouling of micro-ultrafiltration membrane filter pores with large bioparticles. Thus, it is limited in the long term, continuous isolation of large quantities of exosomes.

View Article and Find Full Text PDF

Lin et al. (2022) discover that FGFR2 undergoes liquid-liquid phase separation with its downstream effectors SHP2 and PLCγ1, and the formation of phase separated condensates is essential for signaling competency.

View Article and Find Full Text PDF

Ras dimerization is critical for Raf activation. Here we show that the Ras binding domain of Raf (Raf-RBD) induces robust Ras dimerization at low surface densities on supported lipid bilayers and, to a lesser extent, in solution as observed by size exclusion chromatography and confirmed by SAXS. Community network analysis based on molecular dynamics simulations shows robust allosteric connections linking the two Raf-RBD D113 residues located in the Galectin scaffold protein binding site of each Raf-RBD molecule and 85 Å apart on opposite ends of the dimer complex.

View Article and Find Full Text PDF

Ca/calmodulin-dependent protein kinase II (CaMKII) is an oligomeric enzyme with crucial roles in neuronal signaling and cardiac function. Previously, we showed that activation of CaMKII triggers the exchange of subunits between holoenzymes, potentially increasing the spread of the active state (Stratton et al., 2014; Bhattacharyya et al.

View Article and Find Full Text PDF

The many variants of human Ca/calmodulin-dependent protein kinase II (CaMKII) differ in the lengths and sequences of disordered linkers connecting the kinase domains to the oligomeric hubs of the holoenzyme. CaMKII activity depends on the balance between activating and inhibitory autophosphorylation (on Thr 286 and Thr 305/306, respectively, in the human α isoform). Variation in the linkers could alter transphosphorylation rates within a holoenzyme and the balance of autophosphorylation outcomes.

View Article and Find Full Text PDF

Bovine submaxillary mucin (BSM) is a heavily-glycosylated macromolecular (approximately 4 MDa) protein and is used in various biomaterial applications in light of its high viscosity and biocompatibility, in addition to use as a biochemical substrate or inhibitor as a result of its abundant O-glycans. Although it has been reported that N-glycosylation provides stability of human mucins, most BSM research has been focused on its O-glycans, while N-glycans have not been reported to date. In this study, a common N-glycan core component was detected by monosaccharide analysis of BSM, and the structures of the N-glycans and their relative quantities were determined by liquid chromatography-tandem mass spectrometry.

View Article and Find Full Text PDF

Phosphorylation reactions, driven by competing kinases and phosphatases, are central elements of cellular signal transduction. We reconstituted a native eukaryotic lipid kinase-phosphatase reaction that drives the interconversion of phosphatidylinositol-4-phosphate [PI(4)P] and phosphatidylinositol-4,5-phosphate [PI(4,5)P] on membrane surfaces. This system exhibited bistability and formed spatial composition patterns on supported membranes.

View Article and Find Full Text PDF

Purpose: We wished to evaluate the lipid-rich necrotic core (LRNC) using contrast-enhanced T1-weighted (CE-T1W) black-blood (BB) imaging for vessel walls.

Methods: Ninety-five patients with basilar artery (BA) stenosis who underwent magnetic resonance angiography between January 2016 and August 2018 were enrolled into this present study. CE-T1W BB imaging was considered as a reference method for identifying an LRNC.

View Article and Find Full Text PDF

The guanine nucleotide exchange factor (GEF) Son of Sevenless (SOS) is a key Ras activator that is autoinhibited in the cytosol and activates upon membrane recruitment. Autoinhibition release involves structural rearrangements of the protein at the membrane and thus introduces a delay between initial recruitment and activation. In this study, we designed a single-molecule assay to resolve the time between initial receptor-mediated membrane recruitment and the initiation of GEF activity of individual SOS molecules on microarrays of Ras-functionalized supported membranes.

View Article and Find Full Text PDF

Interactions between EphB4 receptor tyrosine kinases and their membrane-bound ephrin-B2 ligands on apposed cells play a regulatory role in neural stem cell differentiation. With both receptor and ligand constrained to move within the membranes of their respective cells, this signaling system inevitably experiences spatial confinement and mechanical forces in conjunction with receptor-ligand binding. In this study, we reconstitute the EphB4-ephrin-B2 juxtacrine signaling geometry using a supported-lipid-bilayer system presenting laterally mobile and monomeric ephrin-B2 ligands to live neural stem cells.

View Article and Find Full Text PDF

Ras is a membrane-anchored signaling protein that serves as a hub for many signaling pathways and also plays a prominent role in cancer. The intrinsic behavior of Ras on the membrane has captivated the biophysics community in recent years, especially the possibility that it may form dimers. In this article, we describe results from a comprehensive series of experiments using fluorescence correlation spectroscopy and single-molecule tracking to probe the possible dimerization of natively expressed and fully processed K-Ras4B in supported lipid bilayer membranes.

View Article and Find Full Text PDF

Myozyme is a recombinant human acid alpha-glucosidase (rhGAA) that is currently the only drug approved for treating Pompe disease, and its low efficacy means that a high dose is required. Mannose-6-phosphate (M6P) glycosylation on rhGAA is a key factor influencing lysosomal enzyme targeting and the efficacy of enzyme replacement therapy (ERT); however, its complex structure and relatively small quantity still remain to be characterized. This study investigated M6P glycosylation on rhGAA using liquid chromatography (LC)-electrospray ionization (ESI)-high-energy collisional dissociation (HCD) tandem mass spectrometry (MS/MS).

View Article and Find Full Text PDF

The amplification- and enzyme-free quantification of DNA at ultralow concentrations, on the order of 10-1000 targets, is highly beneficial but extremely challenging. To address this challenge, true detection signals must be reliably discriminated from false or noise signals. Herein, we describe the development of associating and dissociating nanodimer analysis (ADNA) as a method that enables a maximum number of detection signals to be collected from true target-binding events while keeping nonspecific signals at a minimum level.

View Article and Find Full Text PDF

The guanine nucleotide exchange factor (GEF) Son of Sevenless (SOS) plays a critical role in signal transduction by activating Ras. Here we introduce a single-molecule assay in which individual SOS molecules are captured from raw cell lysate using Ras-functionalized supported membrane microarrays. This enables characterization of the full-length SOS protein, which has not previously been studied in reconstitution due to difficulties in purification.

View Article and Find Full Text PDF
Article Synopsis
  • * The study introduces a novel multiplexed detection strategy using optokinetically coded nanoprobes that exhibit unique optical signals to monitor multiple miRNA in a single sample with high specificity and quantification.
  • * The OK-NLB assay can detect and differentiate nine miRNA targets efficiently in under an hour and has been validated against established methods, showing promise for cancer diagnosis.
View Article and Find Full Text PDF

The use of patterned substrates to impose geometrical restriction on the lateral mobility of molecules in supported lipid membranes has found widespread utility in studies of cell membranes. Here, we template-pattern supported lipid membranes with nanopatterned graphene. We utilize focused ion beam milling to pattern graphene on its growth substrate, then transfer the patterned graphene to fresh glass substrates for subsequent supported membrane formation.

View Article and Find Full Text PDF
Article Synopsis
  • ovalbumin (OA) is a major allergenic protein found in chicken egg whites, and this study aimed to reduce its allergenicity using a natural protein called ascidian viscera N-acetylglucosaminidase (AVNA).
  • Researchers isolated AVNA and treated OA with varying levels of this enzyme.
  • The treatment successfully cleaved specific components of OA, leading to a significant reduction in its allergenicity, suggesting that AVNA is an effective, gentle method for making OA less allergenic without harsh chemicals.
View Article and Find Full Text PDF

Ras, a small GTPase found primarily on the inner leaflet of the plasma membrane, is an important signaling node and an attractive target for anticancer therapies. Lateral organization of Ras on cellular membranes has long been a subject of intense research; in particular, whether it forms dimers on membranes as part of its regulatory function has been a point of great interest. Here we report Ras dimer formation on membranes by Type II photosensitization reactions, in which molecular oxygen mediates the radicalization of proteins under typical fluorescence experimental conditions.

View Article and Find Full Text PDF

Observation of single plasmonic nanoparticles in reconstituted biological systems allows us to obtain snapshots of dynamic processes between molecules and nanoparticles with unprecedented spatiotemporal resolution and single-molecule/single-particle-level data acquisition. This Concept is intended to introduce nanoparticle-tethered supported lipid bilayer platforms that allow for the dynamic confinement of nanoparticles on a two-dimensional fluidic surface. The dark-field-based long-term, stable, real-time observation of freely diffusing plasmonic nanoparticles on a lipid bilayer enables one to extract a broad range of information about interparticle and molecular interactions throughout the entire reaction period.

View Article and Find Full Text PDF

Single-molecule fluorescence spectroscopy has proven to be instrumental in understanding a wide range of biological phenomena at the nanoscale. Important examples of what this technique can yield to biological sciences are the mechanistic insights on protein-protein and protein-nucleic acid interactions. When interactions of proteins are probed at the single-molecule level, the proteins or their substrates are often immobilized on a glass surface, which allows for a long-term observation.

View Article and Find Full Text PDF

Observation of individual single-nanoparticle reactions provides direct information and insight for many complex chemical, physical, and biological processes, but this is utterly challenging with conventional high-resolution imaging techniques on conventional platforms. Here, we developed a photostable plasmonic nanoparticle-modified supported lipid bilayer (PNP-SLB) platform that allows for massively parallel in situ analysis of the interactions between nanoparticles with single-particle resolution on a two-dimensional (2D) fluidic surface. Each particle-by-particle PNP clustering process was monitored in real time and quantified via analysis of individual particle diffusion trajectories and single-particle-level plasmonic coupling.

View Article and Find Full Text PDF

It is becoming increasingly evident that cell biology research can be considerably advanced through the use of bioengineered tools enabled by nanoscale technologies. Recent advances in nanopatterning techniques pave the way for engineering biomaterial surfaces that control cellular interactions from the nano- to the microscale, allowing more precise quantitative experimentation capturing multi-scale aspects of complex tissue physiology in vitro. The spatially and temporally controlled display of extracellular signaling cues on nanopatterned surfaces (e.

View Article and Find Full Text PDF

This study examined the effects of the thickness of Y(2)O(3):Eu(3+) phosphor films on quartz substrates coated with two-dimensional (2D) SiO(2) square-lattice nanorod photonic crystal layers (PCL) at identical heights on their extraction and absorption efficiency. The photoluminescence (PL) efficiency enhancement ratio decreased exponentially with increasing Y(2)O(3):Eu(3+) film thickness. The 2D PCL-assisted Y(2)O(3):Eu(3+) film with a thickness (t) = 400 nm showed enhancement in the upward and downward PL emission by factors of 6.

View Article and Find Full Text PDF