Publications by authors named "Young-June Yoon"

Cancellous bone is a highly porous material, and two types of waves, fast and slow, are observed when ultrasound is used for detecting bone diseases. There are several possible stimuli for bone remodelling processes, including bone fluid flow, streaming potential, and piezoelectricity. Poroelasticity has been widely used for elucidating the bone fluid flow phenomenon, but the combination of poroelasticity with charge density has not been introduced.

View Article and Find Full Text PDF

Cancellous bone is a highly porous material filled with fluid. The mechanical properties of cancellous bone determine whether the bone is normal or osteoporotic. Wave propagation can be used to measure the elastic constants of cancellous bone.

View Article and Find Full Text PDF

The anisotropic poroelastic constants of an osteon are estimated by micromechanical analysis. Two extreme cases are examined, the drained and the undrained elastic constants. The drained elastic constants are the porous medium's effective elastic constants when the fluid in the pores easily escapes and the pore fluid can sustain no pore pressure.

View Article and Find Full Text PDF

Micromechanical estimates of the elastic constants for a single bone osteonal lamella and its substructures are reported. These estimates of elastic constants are accomplished at three distinct and organized hierarchical levels, that of a mineralized collagen fibril, a collagen fiber, and a single lamella. The smallest collagen structure is the collagen fibril whose diameter is the order of 20 nm.

View Article and Find Full Text PDF

While interstitial fluid flow is necessary for the viability of osteocytes, it is also believed to play a role in bone's mechanosensory system by shearing bone cell membranes or causing cytoskeleton deformation and thus activating biochemical responses that lead to the process of bone adaptation. However, the fluid flow properties that regulate bone's adaptive response are poorly understood. In this paper, we present an analytical approach to determine the degree of anisotropy of the permeability of the lacunar-canalicular porosity in bone.

View Article and Find Full Text PDF