Publications by authors named "Young-Jun An"

Fibroblast growth factor 2 (FGF2) is an attractive biomaterial for pharmaceuticals and functional cosmetics. To improve the thermo-stability of FGF2, we designed two mutants harboring four-point mutations: FGF2-M1 (D28E/C78L/C96I/S137P) and FGF2-M2 (D28E/C78I/C96I/S137P) through bioinformatics, molecular thermodynamics, and molecular modeling. The D28E mutation reduced fragmentation of the FGF2 wild type during preparation, and the substitution of a whale-specific amino acid, S137P, enhanced the thermal stability of FGF2.

View Article and Find Full Text PDF

Fibroblast growth factor 21 (FGF21) has pharmaceutical potential against obesity-related metabolic disorders, including non-alcoholic fatty liver disease. Since thermal stability is a desirable factor for therapeutic proteins, we investigated the thermal behavior of human FGF21. FGF21 remained soluble after heating; thus, we examined its temperature-induced structural changes using circular dichroism (CD).

View Article and Find Full Text PDF

Fibroblast growth factor 11 (FGF11) is one of intracrine FGFs (iFGFs), which function within cells. Unlike canonical FGFs, FGF11 remains intracellularly and plays biological roles in FGF receptor (FGFR)-independent manner. Here, we established an expression system of recombinant FGF11 proteins in E.

View Article and Find Full Text PDF

Viruses are the most common and abundant organisms in the marine environment. To better understand how cetaceans have adapted to this virus-rich environment, we compared cetacean virus-responsive genes to those from terrestrial mammals. We identified virus-responsive gene sequences in seven species of cetaceans, which we compared with orthologous sequences in seven terrestrial mammals.

View Article and Find Full Text PDF

We report a mode-locked Alexandrite single pulse laser with cavity dumping. Mode locking was achieved by using an AOM and an EOM was used for Q-switching and cavity dumping. The instability of the single pulse laser energy output was reduced down to a tenth of that of the conventional single trigger system by introducing a novel double trigger system.

View Article and Find Full Text PDF

α-Poly-L-lysine (PLL) has been used for various purposes such as cell attachment, immunization, and molecular delivery, and is known to be cytotoxic to several cell lines. Here, we studied the effect of PLL on the adipogenesis of 3T3-L1 cells and investigated the underlying mechanism. Differentiation media containing PLL with a molecular weight (MW) greater than 4 kDa enhanced lipid droplet formation and increased adipogenic marker levels, indicating an increase in adipocyte differentiation.

View Article and Find Full Text PDF

ACC-1 is a plasmid-encoded class C β-lactamase identified in clinical isolates of , , , and ACC-1-producing bacteria are susceptible to cefoxitin, whereas they are resistant to oxyimino cephalosporins. Here, we depict crystal structures of apo ACC-1, adenylylated ACC-1, and acylated ACC-1 complexed with cefotaxime and cefoxitin. ACC-1 has noteworthy structural alterations in the R2 loop, the Ω loop, and the Phe119 loop located along the active-site rim.

View Article and Find Full Text PDF

Fibroblast growth factor 11 (FGF11) is a member of the intracellular fibroblast growth factor superfamily. Here, we identified FGF11 as a novel mediator of adipogenesis. During 3T3-L1 adipocyte differentiation, the expression of FGF11 decreased at the mitotic clonal expansion stage and increased at the terminal differentiation stage.

View Article and Find Full Text PDF

The chaperonins (CPNs) are megadalton sized hollow complexes with two cavities that open and close to encapsulate non-native proteins. CPNs are assigned to two sequence-related groups that have distinct allosteric mechanisms. In Group I CPNs a detachable co-chaperone, GroES, closes the chambers whereas in Group II a built-in lid closes the chambers.

View Article and Find Full Text PDF
Article Synopsis
  • The hyperthermophilic archaeon Thermococcus onnurineus NA1 can grow on formate and produce hydrogen via a specific enzyme complex that supports ATP generation.
  • By repeatedly culturing the organism in a formate-rich environment, researchers created a new strain (WTF-156T) that significantly enhanced hydrogen production and formate consumption.
  • Genetic analysis of WTF-156T revealed mutations in a formate transporter gene (TON_1573), suggesting that changes in this gene may be crucial for improving the organism’s ability to utilize formate and grow effectively.
View Article and Find Full Text PDF

Nucleotides were effective in inhibiting the class C β-lactamase CMY-10. IMP was the most potent competitive inhibitor, with a value of 16.2 μM.

View Article and Find Full Text PDF
Article Synopsis
  • * Analysis of CaCel shows it has five introns and may have originated from a horizontal gene transfer from fungi to the springtail, indicating a complex evolutionary relationship.
  • * The enzyme is most effective at acidic pH and low temperatures, making it suitable for breaking down green algae for potential biofuel production.
View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to understand how the nucleophilic serine in specific β-lactamases, AmpC BER and CMY-10, undergoes adenylylation, a chemical modification that affects antibiotic resistance.
  • Researchers used techniques like X-ray crystallography and mass spectrometry to analyze the stability of the adenylylation process and tested the impact of a compound called acAMP on the effectiveness of the antibiotic ceftazidime.
  • Results showed that acAMP inhibits the activity of these β-lactamases by attaching to the nucleophilic serine through a two-step mechanism, leading to lower antibiotic resistance, and the findings could inform the development of new inhibitors against these enzymes.
View Article and Find Full Text PDF

EstSRT1 is a family VIII carboxylesterase that hydrolyzes oxyimino third- and fourth-generation cephalosporins, first-generation cephalosporins and ester substrates. According to the crystal structure of EstSRT1 (2.0-Å resolution), this protein contains a large α/β domain and a small α-helical domain and harbors three catalytic residues (Ser71, Lys74, and Tyr160) in the cavity at the domain interface, similarly to other family VIII carboxylesterases.

View Article and Find Full Text PDF

Chaperonins (CPNs) are megadalton sized ATP-dependent nanomachines that facilitate protein folding through complex cycles of complex allosteric articulation. They consist of two back-to-back stacked multisubunit rings. CPNs are usually classified into Group I and Group II.

View Article and Find Full Text PDF
Article Synopsis
  • Lon proteases, specifically LonA and LonB, are crucial for managing protein quality in cells by degrading defective or improperly folded proteins.
  • The study provides a detailed 2.03-resolution crystal structure of the isolated AAA+ module from LonB in Thermococcus onnurineus, revealing its conformation is similar to an ADP-bound state, which hints at its ATP-independent proteolytic capability.
  • Structural comparisons between LonA and LonB's AAA+ modules categorize them into two distinct clades, with LonB identified in a new HINS clade, while LonA falls under the HCLR clade.
View Article and Find Full Text PDF

Endo-β-1,4-D-mannanase from the Antarctic springtail, Cryptopygus antarcticus (CaMan), is a cold-adapted β-mannanase that has the lowest optimum temperature (30°C) of all known β-mannanases. Here, we report the apo- and mannopentaose (M5) complex structures of CaMan. Structural comparison of CaMan with other β-mannanases from the multicellular animals reveals that CaMan has an extended loop that alters topography of the active site.

View Article and Find Full Text PDF

The emergence and global spread of multidrug-resistant Acinetobacter baumannii strains are major threats to public health. Inhibition of peptidoglycan biosynthesis is an effective strategy for the development of antibiotics. The ATP-dependent UDP-N-acetylmuramoyl-tripeptide-D-alanyl-D-alanine ligase (MurF) that is responsible for the last step of peptidoglycan biosynthesis is a validated target for the development of antibiotics.

View Article and Find Full Text PDF

MurF adds d-Ala-d-Ala dipeptide to UDP-N-acetylmuramyl-l-Ala-γ-d-Glu-m-DAP (or l-Lys) in an ATP-dependent manner, which is the last step in the biosynthesis of monomeric precursor of peptidoglycan. Here we report crystal structures of two MurF-ATP complexes: the MurF-ATP complex and the MurF-ATP-UDP complex. The ATP-binding mode revealed by the crystal structure of the MurF-ATP complex confirms the previous biochemical demonstration that a carbamoylated lysine and two Mg(2+) ions are required for enzyme activity of MurF.

View Article and Find Full Text PDF

Pantothenate is the essential precursor of coenzyme A (CoA), a fundamental cofactor in all aspects of metabolism. In bacteria and eukaryotes, pantothenate synthetase (PS) catalyzes the last step in the pantothenate biosynthetic pathway, and pantothenate kinase (PanK) phosphorylates pantothenate for its entry into the CoA biosynthetic pathway. However, genes encoding PS and PanK have not been identified in archaeal genomes.

View Article and Find Full Text PDF

The CaMan gene product from Cryptopygus antarcticus, which belongs to the glycoside hydrolase family 5 type β-1,4-D-mannanases, has been crystallized using a precipitant solution consisting of 0.1 M Tris-HCl pH 8.5, 25%(w/v) polyethylene glycol 3350 by the microbatch crystallization method at 295 K.

View Article and Find Full Text PDF

EstU1 is a unique family VIII carboxylesterase that displays hydrolytic activity toward the amide bond of clinically used β-lactam antibiotics as well as the ester bond of p-nitrophenyl esters. EstU1 assumes a β-lactamase-like modular architecture and contains the residues Ser100, Lys103, and Tyr218, which correspond to the three catalytic residues (Ser64, Lys67, and Tyr150, respectively) of class C β-lactamases. The structure of the EstU1/cephalothin complex demonstrates that the active site of EstU1 is not ideally tailored to perform an efficient deacylation reaction during the hydrolysis of β-lactam antibiotics.

View Article and Find Full Text PDF

De novo zinc single-wavelength anomalous dispersion (Zn-SAD) phasing has been demonstrated with the 1.9 Å resolution data of glucose isomerase and 2.6 Å resolution data of Staphylococcus aureus Fur (SaFur) collected using in-house Cu Kα X-ray source.

View Article and Find Full Text PDF

The yncB gene product from Vibrio vulnificus, which belongs to the medium-chain dehydrogenase/reductase (MDR) superfamily, was crystallized using the microbatch crystallization method at 295 K. Diffraction data sets were collected using synchrotron radiation. Crystals of selenomethionine-substituted YncB protein belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 90.

View Article and Find Full Text PDF

Zinc is a suitable metal for anomalous dispersion phasing methods in protein crystallography. Structure determination using zinc anomalous scattering has been almost exclusively limited to proteins with intrinsically bound zinc(s). Here, it is reported that multiple zinc ions can easily be charged onto the surface of proteins with no intrinsic zinc-binding site by using zinc-containing solutions.

View Article and Find Full Text PDF