Background: Traumatic brain injury (TBI) is a major cause of disability and mortality worldwide. However, existing treatments still face numerous clinical challenges. Building on our prior research showing peripheral nerve-derived stem cell (PNSC) spheroids with Schwann cell-like phenotypes can secrete neurotrophic factors to aid in neural tissue regeneration, we hypothesized that repeated intrathecal injections of PNSC spheroids would improve the delivery of neurotrophic factors, thereby facilitating the restoration of neurological function and brain tissue repair post-TBI.
View Article and Find Full Text PDFSpinal cord injury (SCI), primarily caused by trauma, leads to permanent and lasting loss of motor, sensory, and autonomic functions. Current therapeutic strategies are focused on mitigating secondary injury, a crucial aspect of SCI pathophysiology. Among these strategies, stem cell therapy has shown considerable therapeutic potential.
View Article and Find Full Text PDFRecent trends suggest novel natural compounds as promising treatments for cardiovascular disease. The authors examined how neopetroside A, a natural pyridine nucleoside containing an α-glycoside bond, regulates mitochondrial metabolism and heart function and investigated its cardioprotective role against ischemia/reperfusion injury. Neopetroside A treatment maintained cardiac hemodynamic status and mitochondrial respiration capacity and significantly prevented cardiac fibrosis in murine models.
View Article and Find Full Text PDFAlthough lipoma is a common benign tumor, it occurs relatively infrequently in the oral and maxillofacial areas, and only 31 cases of lipoma in the buccal fat pad have been reported. Herein, we present an extremely rare case of symmetric lipomas in both buccal fat pads. These masses were incidentally discovered during a facelift procedure in a 50-year-old woman with a 4-year history of tamoxifen use.
View Article and Find Full Text PDFStrategies for stem cell-based cardiac regeneration and repair are key issues for the ischemic heart disease (IHD) patients with chronic complications related to ischemic necrosis. Cardiac stem cells (CSCs) have demonstrated high therapeutic efficacy for IHD treatment owing to their specific cardiac-lineage commitment. The therapeutic potential of CSCs could be further enhanced by designing a cellular spheroid formulation.
View Article and Find Full Text PDFStem cell therapy is one of the most promising candidate treatments for spinal cord injury. Research has shown optimistic results for this therapy, but clinical limitations remain, including poor viability, engraftment, and differentiation. Here, we isolated novel peripheral nerve-derived stem cells (PNSCs) from adult peripheral nerves with similar characteristics to neural-crest stem cells.
View Article and Find Full Text PDFChordomas are rare, locally aggressive bone malignancies with poor prognoses. However, those with minimal or no bone involvement are more easily resectable because of their well-delineated margins and thus have better prognoses. Such extraosseous chordomas of the spine are localized both intradurally and extradurally.
View Article and Find Full Text PDFCardiac regeneration with adult stem-cell (ASC) therapy is a promising field to address advanced cardiovascular diseases. In addition, extracellular vesicles (EVs) from ASCs have been implicated in acting as paracrine factors to improve cardiac functions in ASC therapy. In our work, we isolated human cardiac mesenchymal stromal cells (h-CMSCs) by means of three-dimensional organ culture (3D culture) during ex vivo expansion of cardiac tissue, to compare the functional efficacy with human bone-marrow derived mesenchymal stem cells (h-BM-MSCs), one of the actively studied ASCs.
View Article and Find Full Text PDFDelivery of synovium-resident mesenchymal stem cells (synMSCs) to cartilage defect site might provide a novel therapeutic modality for treatment of articular cartilage diseases. However, low isolation efficiency of synMSCs limits their therapeutic application. Niche-preserving non-enzymatic isolation of synMSCs was firstly attempted by employing micro-organ culture system based on recapitulating tissue-specific homeostasis ex vivo.
View Article and Find Full Text PDFBackground: Isocitrate dehydrogenase 1 (IDH1) mutation is common in low-grade glioma (approximately 80%) and acute myeloid leukemia (approximately 10%). Other than brain tumor or hematologic malignancies, intrahepatic cholangiocarcinoma (iCC) is a well-known solid tumor with IDH1 mutation (6.8-20%).
View Article and Find Full Text PDFUnlabelled: Endogenous cardiac stem cells (CSCs) are known to play a certain role in the myocardial homeostasis of the adult heart. The extracellular matrix (ECM) surrounding CSCs provides mechanical signals to regulate a variety of cell behaviors, yet the impact in the adult heart of these mechanical properties of ECM on CSC renewal and fate decisions is mostly unknown. To elucidate CSC mechanoresponses at the individual cell and myocardial level, we used the sol-to-gel transitional gelatin-poly(ethylene glycol)-tyramine (GPT) hydrogel with a tunable mechanical property to construct a three-dimensional (3D) matrix for culturing native myocardium and CSCs.
View Article and Find Full Text PDFOdontogenic ameloblast-associated protein (ODAM) contributes to cell adhesion. In human cancer, ODAM is down-regulated, and the overexpression of ODAM results in a favourable prognosis; however, the molecular mechanisms underlying ODAM-mediated inhibition of cancer invasion and metastasis remain unclear. Here, we identify a critical role for ODAM in inducing cancer cell adhesion.
View Article and Find Full Text PDFMyocardial infarction (MI) results in the substantial loss of functional cardiomyocytes, which frequently leads to intractable heart disorders. Cardiac stem cells (CSCs) that retain the capacity to replace all cardiac cells might be a promising strategy for providing a source of new functional cardiomyocytes; however, the poor survival and engraftment of transplanted CSCs in the hostile environment of MI critically mitigate their therapeutic benefits. To capitalize their therapeutic potential, an ex vivo strategy in which CSCs were introduced to the recombinant heat shock protein 27 (Hsp27) through a TAT protein transduction domain for increasing the viability and engraftment in the infarcted myocardium was designed.
View Article and Find Full Text PDFThere is great interest in the development of cardiac stem cells (CSCs) cell-based therapeutics; thus, clinical translation requires an efficient method for attaining therapeutic quantities of these cells. Furthermore, an in vitro model to investigate the mechanisms regulating the cardiac homeostasis is crucial. We sought to develop a simple myocardial culture method for enabling both the recapitulation of myocardial homeostasis and the simultaneous isolation of CSCs.
View Article and Find Full Text PDFCongestive heart failure is mostly resulted in a consequence of the limited myocardial regeneration capacity after acute myocardial infarction. Targeted delivery of proangiogenic factors and/or stem cells to the ischemic myocardium is a promising strategy for enhancing their local and sustained therapeutic effects. Herein, we designed an epicardial delivery system of vascular endothelial growth factor (VEGF) and cardiac stem cells (CSCs) using poly(l-lactic acid) (PLLA) mat applied to the acutely infarcted myocardium.
View Article and Find Full Text PDFIn bone marrow, bone marrow stromal cells (BMSCs) have the capacity to differentiate into osteoblasts and adipocytes. Age-related osteoporosis is associated with a reciprocal decrease of osteogenesis and an increase of adipogenesis in bone marrow. In this study, we demonstrate that disruption of nuclear factor I-C (NFI-C) impairs osteoblast differentiation and bone formation, and increases bone marrow adipocytes.
View Article and Find Full Text PDFBackground: Carcinoma-associated fibroblasts (CAFs) contribute to carcinogenesis and cancer progression, although their origin and role remain unclear. We recently identified and investigated the in situ identity and implications of gastric submucosa-resident mesenchymal stem cells (GS-MSCs) in the progression of gastric carcinogenesis.
Methods: We isolated GS-MSCs from gastric submucosa using hydrogel-supported organ culture and defined their identity.
J Biomater Sci Polym Ed
November 2013
Alginate, a polysaccharide extracted from brown seaweed, remains the most widely used biomaterial for immobilizing cells to be transplanted, because of the good viability of the encapsulated cells and the relatively ease of processing for cell encapsulation. However, the main drawback is the immune reaction in vivo. To overcome this problem, we have demonstrated a modified Korbutt method for alginate purification.
View Article and Find Full Text PDFThe use of tissue engineering to repair large osteochondral defects has been impeded by the limited regenerative capacity of cartilage. Herein, we describe the local release of bone morphogenetic protein 7 (BMP-7) to stimulate the bone marrow-derived progenitors to repair osteochondral defects. BMP-7-releasing poly(D,L-lactide-co-glycolide) (PLGA) matrix was specially designed to retain the dual-function of local BMP-7 release and progenitor-scaffolding with its defect-fitting architecture.
View Article and Find Full Text PDFPurpose: This experimental study verified the effect of adipose-tissue-derived stem cells (ASCs) on the healing of ischemic colonic anastomoses in rats.
Methods: ASCs were isolated from the subcutaneous fat tissue of rats and identified as mesenchymal stem cells by identification of different potentials. An animal model of colonic ischemic anastomosis was induced by modifying Nagahata's method.
Background: There has been no specific treatment for ischemic colitis. We verified the effects of adipose-derived stem cells (ASCs) on ischemia-induced colitis in a rat model.
Methods: Forty male Sprague-Dawley rats (10 weeks old; weight, 350 ± 20 g) were divided into two groups: a control group (only fibrinogen and thrombin injected, n = 20) and an ASC group (local implantation of ASCs mixed with thrombin and fibrinogen, n = 20).
Mesenchymal stem cells (MSCs) have been discovered in a multitude of organs, but their distribution and identity are still uncertain. Furthermore, loose connective tissue (LCT) is dispersed throughout virtually all organs, but its biological role in tissue homeostasis is unclear. Here, we describe a unique organ culture system to explore the omnipresence and in situ identity of MSCs among the LCTs.
View Article and Find Full Text PDFPurpose: Povidone-iodine (polyvinylpyrrolidone iodine, PI), which is commonly used as a pre- and postoperative oral antiseptic, has been reported to cause pneumonia secondary to its pulmonary aspiration. Because no studies have yet investigated the underlying mechanisms of PI-induced pneumonia, we conducted an animal study to analyze the effect of PI on the lung following its pulmonary instillation.
Methods: The lungs of 61 male Sprague-Dawley rats (150-250 g) were instilled with varying volumes of either phosphate-buffered saline or PI solutions varying in strength from 0.
Conventional systems for isolating adipose-derived stem cells (ASC) require enzymatic digestion of adipose tissue (AT), followed by monolayer culture to the enrich the stem cell population. However, these systems are hindered by low cell yields and a lack of reproducibility. The present study was aimed at developing a unique strategy for isolating ASC based on fibrin matrix-supported three-dimensional (3-D) organ culture of native AT.
View Article and Find Full Text PDF