Publications by authors named "Young-Hoon Han"

Revision repair of retorn partial articular supraspinatus tendon avulsion (PASTA) lesion is difficult for poor tendon quality without tear completion and repair. Trans-tendon suture bridge repair with biceps tendon augmentation can preserve the intact bursal side cuff attachment and has shown satisfactory clinical outcomes. Moreover, trans-tendon suture bridge rotator cuff repair technique, along with biceps tendon augmentation, reinforces high-grade PASTA lesions by moving the tenotomized biceps tendon into the torn articular side cuff defect with added advantage of blood supply through the tenotomized biceps tendon graft.

View Article and Find Full Text PDF

MicroRNAs are key regulators of gene expression in tumorigenesis. In this study, we investigated the tumor-suppressive function of miR-31-3p. Analysis of the Gene Expression Omnibus database revealed that the expression of miR-31-3p in prostate cancer tissues is lower than that in adjacent normal tissues from patients with prostate cancer.

View Article and Find Full Text PDF

Microplastics (MPs) have been recently recognized as a global environmental threat and its exposure as a risk factor to human health. Health effects through MPs exposure have been recently reported, especially through oral route of exposure. Since MPs could be exposed to humans through routes other than oral, this study was designed to evaluate whether MPs exposed through the inhalation route could be delivered to fetal mice and exhibit systemic toxicity.

View Article and Find Full Text PDF

Introduction: The purpose of this study is to report the radiologic and clinical outcomes of arthroscopic intervention for isolated posterosuperior paralabral cysts and simultaneous treatment of cysts combined with associated shoulder pathologies.

Materials And Methods: From March 2008 through December 2016, 70 cases (48 males and 22 females) operated on for symptomatic posterosuperior paralabral cysts were included. Mean age was 45 (range 18-69).

View Article and Find Full Text PDF

Radiotherapy is a leading treatment for various types of cancer. However, exposure to high-dose ionizing radiation causes acute gastrointestinal injury and gastrointestinal syndrome. This has significant implications for human health, and therefore, radioprotection is a major area of research.

View Article and Find Full Text PDF

Enhancing the radioresponsiveness of colorectal cancer (CRC) is essential for local control and prognosis. However, consequent damage to surrounding healthy cells can lead to treatment failure. We hypothesized that short‑chain fatty acids (SCFAs) could act as radiosensitizers for cancer cells, allowing the administration of a lower and safer dose of radiation.

View Article and Find Full Text PDF

Purpose: Comminuted inferior pole fractures of the patella are notorious fractures where it is difficult to obtain rigid internal fixation by conventional tension band wiring. The purpose of this study is to evaluate the clinical and radiological outcomes of the suture bridge anchor fixation for these comminuted inferior pole fractures of the patella.

Methods: From March 2012 to December 2018, suture bridge anchor fixation for the inferior pole comminuted fracture of the patella was performed in 22 patients.

View Article and Find Full Text PDF

MicroRNAs (miRNAs/miRs) are a class of small non‑coding RNAs that play pivotal roles in cancer physiology as important epigenetic regulators of gene expression. Several miRNAs have been previously discovered that regulate the proliferation of the colorectal cancer (CRC) cell line HCT116. In the present study, one of these miRNAs, miR‑5191, was characterized as a tumor suppressor in CRC cells.

View Article and Find Full Text PDF

Although evidence has emerged to suggest that YAP overexpression is a crucial factor for tumor progression and resistance to targeted drugs in multiple cancers, the miRNA-mediated YAP regulation is still unclear. Here we show that the novel miR-550a-3-5p acts as a tumor suppressor and reverses BRAF inhibitor resistance through the direct targeting of YAP. Our data showed that the miR-550a-3-5p suppressed cell proliferation, metastasis, and tumor sphere formation through the direct inhibition of YAP and its oncogenic pathway in various cancer cell types.

View Article and Find Full Text PDF

Radiotherapy induces the production of cytokines, thereby increasing aggressive tumor behavior. This radiation effect results in the failure of radiotherapy and increases the mortality rate in patients. We found that interleukin-4 (IL-4) and IL-4Rα (IL-4 receptor) are highly expressed in various human cancer cells subsequent to radiation treatment.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) play pivotal roles in tumorigenesis as either tumor suppressors or oncogenes. In the present study, we discovered and demonstrated the tumor suppressive function of a novel miRNA miR-5582-5p. miR-5582-5p induced apoptosis and cell cycle arrest in cancer cells, but not in normal cells.

View Article and Find Full Text PDF

One of the initial steps in metastatic dissemination is the epithelial-mesenchymal transition (EMT). Along this line, microRNAs (miRNAs) have been shown to function as important regulators of tumor progression at various stages. Therefore, we performed a functional screening for EMT-regulating miRNAs and identified several candidate miRNAs.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) is essential for increased invasion and metastasis during cancer progression. Among the candidate EMT-regulating microRNAs that we previously identified, miR-181b-3p was found to induce EMT in MCF7 breast cancer cells, as indicated by an EMT-characteristic morphological change, increased invasiveness, and altered expression of an EMT marker. Transfection with a miR-181b-3p inhibitor reduced the expression of mesenchymal markers and the migration and invasion of highly invasive breast cancer cells.

View Article and Find Full Text PDF

Cellular senescence is a state of irreversible growth arrest that can be triggered by multiple mechanisms, including telomere shortening, the epigenetic derepression of the INK4α/ARF locus and DNA damage. Senescence has been considered a tumor‑suppressing mechanism that permanently arrests cells at risk for malignant transformation. However, accumulating evidence shows that senescent cells have deleterious effects on the tissue microenvironment.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most common malignant brain tumor and exhibits aggressive and invasive behavior. We previously identified four miRNAs-miR-29b, 494, 193a-3p, and 30e-with enhanced expression in GBM following treatment of ionizing radiation by miRNA microarray analysis. In this study, we found that only miR-29b inhibited tumor cell migration and invasion by reducing MMP-2 activity via phospho-AKT/β-catenin signaling, and stimulated a more epithelial-like morphology.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression at the transcriptional and post-transcriptional levels. Here we show that miR-30e, which was previously identified as an ionizing radiation-inducible miRNA, enhances cellular invasion by promoting secretion of the matrix metalloproteinase MMP-2. The enhancement of cellular invasion by miR-30e involved up-regulation of the epidermal growth factor receptor (EGFR) and subsequent activation of its downstream signaling mediators, AKT and extracellular signal-regulated kinase.

View Article and Find Full Text PDF

Although targeting radioresistant tumor cells is essential for enhancing the efficacy of radiotherapy, the signals activated in resistant tumors are still unclear. This study shows that ERp57 contributes to radioresistance of laryngeal cancer by activating STAT3. Increased ERp57 was associated with the radioresistant phenotype of laryngeal cancer cells.

View Article and Find Full Text PDF

3-Hydroxy-3',4'-dimethoxyflavone (HDMF) is a natural chemical product that is not currently regarded as a drug. In our study, we employed glioblastoma cells and cell biology and biochemistry approaches to investigate the potential of HDMF as a natural anticancer therapy option. FACS analysis showed that treatment concentration of HDMF does not exert cytotoxicity on U251 cells.

View Article and Find Full Text PDF

Shikonin, a naphthoquinone derivative, has been shown to possess antitumor activity. In the present study, the effects of shikonin and its analog, β,β-dimethylacrylshikonin, were investigated as radiosensitizers on the human colon cancer cell line, HCT-116. Shikonin and, to a greater extent, its analog-induced apoptosis of HCT-116 cells further synergistically potentiated the induction of apoptosis when combined with ionizing radiation (IR) treatment.

View Article and Find Full Text PDF

We already had reported that Bcl-w promotes invasion or migration in gastric cancer cells and glioblastoma multiforme (GBM) by activating matrix metalloproteinase-2 (MMP-2) via specificity protein 1 (Sp1) or β-cateinin, respectively. High expression of Bcl-w also has been reported in GBM which is the most common malignant brain tumor and exhibits aggressive and invasive behavior. These reports propose that Bcl-w-induced signaling is strongly associated with aggressive characteristic of GBM.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) play an important role in various stages of tumor progression. miR-494, which we had previously identified as a miRNA induced by ionizing radiation (IR) in the glioma cell line U-251, was observed to enhance invasion of U-251 cells by activating MMP-2. The miR-494-induced invasive potential was accompanied by, and dependent on, epidermal growth factor receptor (EGFR) upregulation and the activation of its downstream signaling constituents, Akt and ERK.

View Article and Find Full Text PDF

Bcl-w a pro-survival member of the Bcl-2 protein family, is expressed in a variety of cancer types, including gastric and colorectal adenocarcinomas, as well as glioblastoma multiforme (GBM), the most common and lethal brain tumor type. Previously, we demonstrated that Bcl-w is upregulated in gastric cancer cells, particularly those displaying infiltrative morphology. These reports propose that Bcl-w is strongly associated with aggressive characteristic, such as invasive or mesenchymal phenotype of GBM.

View Article and Find Full Text PDF