Intrinsic disorders are a common feature of hub proteins in eukaryotic interactomes controlling the signaling pathways. The intrinsically disordered proteins (IDPs) are prone to misfolding, and maintaining their functional stability remains a major challenge in validating their therapeutic potentials. Considering that IDPs are highly enriched in RNA-binding proteins (RBPs), here we reasoned and confirmed that IDPs could be stabilized by fusion to RBPs.
View Article and Find Full Text PDFThe multifunctional influenza virus protein PB1-F2 plays several roles in deregulation of host innate immune responses and is a known immunopathology enhancer of the 1918 influenza pandemic. Here, we show that the 1918 PB1-F2 protein not only interferes with the mitochondria-dependent pathway of type I interferon (IFN) signaling, but also acquired a novel IFN antagonist function by targeting the DEAD-box helicase DDX3, a key downstream mediator in antiviral interferon signaling, toward proteasome-dependent degradation. Interactome analysis revealed that 1918 PB1-F2, but not PR8 PB1-F2, binds to DDX3 and causes its co-degradation.
View Article and Find Full Text PDFThe folding of monomeric antigens and their subsequent assembly into higher ordered structures are crucial for robust and effective production of nanoparticle (NP) vaccines in a timely and reproducible manner. Despite significant advances in design and structure-based assembly, most engineered NPs are refractory to soluble expression and fail to assemble as designed, presenting major challenges in the manufacturing process. The failure is due to a lack of understanding of the kinetic pathways and enabling technical platforms to ensure successful folding of the monomer antigens into regular assemblages.
View Article and Find Full Text PDFInfluenza virus infections continually pose a major public health threat with seasonal epidemics and sporadic pandemics worldwide. While currently licensed influenza vaccines provide only strain-specific protection, antigenic drift and shift occasionally render the viruses resistant to the host immune responses, which highlight the need for a vaccine that provides broad protection against multiple subtypes. In this study, we suggest a vaccination strategy using cold-adapted, live attenuated influenza vaccines (CAIVs) to provide a broad, potent, and safe cross-protection covering antigenically distinct hemagglutinin (HA) groups 1 and 2 influenza viruses.
View Article and Find Full Text PDFA novel protein-folding function of RNA has been recognized, which can outperform previously known molecular chaperone proteins. The RNA as a molecular chaperone (chaperna) activity is intrinsic to some ribozymes and is operational during viral infections. Our purpose was to test whether influenza hemagglutinin (HA) can be assembled in a soluble, trimeric, and immunologically activating conformation by means of an RNA molecular chaperone (chaperna) activity.
View Article and Find Full Text PDFIn our previous study, X-31ca-based H5N1 LAIVs, in particular, became more virulent in mice than the X-31ca MDV, possibly by the introduction of the surface antigens of highly pathogenic H5N1 influenza virus, implying that additional attenuation is needed in this cases to increase the safety level of the vaccine. In this report we suggest an approach to further increase the safety of LAIV through additional cold-adapted mutations in the hemagglutinin. The cold-adaptation of X-31 virus resulted in four amino acid mutations in the HA.
View Article and Find Full Text PDFCold-adapted live attenuated influenza vaccines (CAIVs) have been considered as a safe prophylactic measure to prevent influenza virus infections. The safety of a CAIV depends largely on genetic markers that confer specific attenuation phenotypes. Previous studies with other CAIVs reported that polymerase genes were primarily responsible for the attenuation.
View Article and Find Full Text PDFThe eye route has been evaluated as an efficient vaccine delivery routes. However, in order to induce sufficient antibody production with inactivated vaccine, testing of the safety and efficacy of the use of inactivated antigen plus adjuvant is needed. Here, we assessed various types of adjuvants in eyedrop as an anti-influenza serum and mucosal Ab production-enhancer in BALB/c mice.
View Article and Find Full Text PDFUnlabelled: Influenza vaccines aimed at inducing antibody (Ab) responses against viral surface hemagglutinin (HA) and neuraminidase (NA) provide sterile immunity to infection with the same subtypes. Vaccines targeting viral conserved determinants shared by the influenza A viruses (IAV) offer heterosubtypic immunity (HSI), a broad protection against different subtypes. We proposed that vaccines targeting both HA and the conserved ectodomain of matrix protein 2 (M2e) would provide protection against infection with the same subtype and also HSI against other subtypes.
View Article and Find Full Text PDFInfluenza virus continues to take a heavy toll on human health and vaccination remains the mainstay of efforts to reduce the clinical impact imposed by viral infections. Proven successful for establishing live attenuated vaccine donor strains, cold-adapted live attenuated influenza vaccines (CAIVs) have become an attractive modality for controlling the virus infection. Previously, we developed the cold-adapted strains A/X-31 and B/Lee/40 as novel donor strains of CAIVs against influenza A and B viruses.
View Article and Find Full Text PDFLive attenuated vaccine (LAV), mimicking natural infection, provides an excellent protection against microbial infection. The development of LAV, however, still remains highly empirical and the rational design of clinically useful LAV is scarcely available. Apoptosis and caspase activation are general host antiviral responses in virus-infected cells.
View Article and Find Full Text PDFDespite global efforts to control influenza viruses, they have taken a heavy toll on human public health worldwide. Among particular threats is highly pathogenic avian H5N1 influenza virus (HPAI) due to not only its high mortality in humans but also possible human-to-human transmission either through reassortment with other human influenza viruses such as 2009 pandemic H1N1 influenza virus, or by genetic mutations. With the aim of developing effective vaccines against the H5N1 viruses, we generated two live attenuated H5N1 vaccine candidates against A/Indonesia/05/2005 (clade 2.
View Article and Find Full Text PDFThe 2009 pandemic influenza H1N1 (pdmH1N1) is characterized by rapid transmission among humans and disproportionate infection to children and young adults. Although the pdmH1N1 demonstrated less lethality than initially expected and has now moved into its post-pandemic period, it remains highly possible that through antigenic shift or antigenic drift the pdmH1N1 might re-emerge in the future as a more virulent strain than before, underscoring the need for vaccination prior to an outbreak. Using X-31 ca as a backbone strain, we generated a live attenuated pdmH1N1 vaccine and evaluated its potential as a safe and effective vaccine using mouse and ferret models.
View Article and Find Full Text PDFBackground: Hemodialysis (HD) patients have multiple causes of immune dysfunction and poor immune response to influenza vaccination. We investigated the antibody response rate to a pandemic H1N1/2009 influenza vaccination and clinical parameters influencing the induction of antibody responses in HD patients.
Methods: A total of 114 HD patients were vaccinated with a monovalent adjuvanted H1N1 inactivated influenza vaccine.
The nonstructural protein 1 (NS1) of influenza A virus (IAV) enables the virus to disarm the host cell type 1 IFN defense system. Mutation or deletion of the NS1 gene leads to attenuation of the virus and enhances host antiviral response making such live-attenuated influenza viruses attractive vaccine candidates. Sublingual (SL) immunization with live influenza virus has been found to be safe and effective for inducing protective immune responses in mucosal and systemic compartments.
View Article and Find Full Text PDFThe rapid transmission of the pandemic 2009 H1N1 influenza virus (pH1N1) among humans has raised the concern of a potential emergence of reassortment between pH1N1 and highly pathogenic influenza strains, especially the avian H5N1 influenza virus. Here, we report that the cold-adapted pH1N1 live attenuated vaccine (CApH1N1) elicits cross-reactive immunity to seasonal and H5 influenza A viruses in the mouse model. Immunization with CApH1N1 induced both systemic and mucosal antibodies with broad reactivity to seasonal and H5 strains, including HAPI H5N1 and the avian H5N2 virus, providing complete protection against heterologous and heterosubtypic lethal challenges.
View Article and Find Full Text PDFBackground: The ectodomain of matrix protein 2 (M2e) of influenza A virus is a rationale target antigen candidate for the development of a universal vaccine against influenza as M2e undergoes little sequence variation amongst human influenza A strains. Vaccine-induced M2e-specific antibodies (Abs) have been shown to display significant cross-protective activity in animal models. M2e-based vaccine constructs have been shown to be more protective when administered by the intranasal (i.
View Article and Find Full Text PDFThe influenza virus, a mucosal pathogen that infects the respiratory tract, is a major global health issue. There have been attempts to mucosally administer inactivated influenza vaccines to induce both mucosal and systemic immune responses. However, mucosally administered inactivated influenza vaccine has low immunogenicity, which is partially due to the lack of an effective mucosal adjuvant.
View Article and Find Full Text PDFType I interferon (IFN-I) plays a critical role in the homeostasis of hematopoietic stem cells and influences neutrophil influx to the site of inflammation. IFN-I receptor knockout (Ifnar1⁻/⁻) mice develop significant defects in the infiltration of Ly6C(hi) monocytes in the lung after influenza infection (A/PR/8/34, H1N1). Ly6C(hi) monocytes of wild-type (WT) mice are the main producers of MCP-1 while the alternatively generated Ly6C(int) monocytes of Ifnar1⁻/⁻ mice mainly produce KC for neutrophil influx.
View Article and Find Full Text PDFRecent studies have revealed that innate immunity is involved in the development of adaptive immune responses; however, its role in protection is not clear. In order to elucidate the exact role of Toll-like receptor (TLR) or RIG-I-like receptor (RLR) signaling on immunogenicity and protective efficacy against influenza A virus infection (A/PR/8/34 [PR8]; H1N1), we adapted several innate signal-deficient mice (e.g.
View Article and Find Full Text PDFFor centuries, Corydalis Rhizoma has been used in Korean traditional medicine. Tetrahydropalmatine is an alkaloid compound and a prominent anti-inflammatory agent found in plants, including Corydalis yanhusuo. However, the therapeutic mechanisms of tetrahydropalmatine are still not well understood.
View Article and Find Full Text PDFA randomized, double-blind, controlled clinical trial was conducted to evaluate the efficacy and safety of CJ-50300, a newly developed cell culture-derived smallpox vaccine, and to determine its minimum effective dose. The overall rates of cutaneous "take" reaction and humoral and cellular immunogenicity in CJ-50300 vaccinees were 100% (123/123), 99.2% (122/123), and 90.
View Article and Find Full Text PDFBackground: Pandemic influenza poses a serious threat to global health and the world economy. While vaccines are currently under development, passive immunization could offer an alternative strategy to prevent and treat influenza virus infection. Attempts to develop monoclonal antibodies (mAbs) have been made.
View Article and Find Full Text PDFDevelopment of effective vaccines against highly pathogenic avian influenza (HPAI) H5N1 viruses is a global public health priority. Considering the difficulty in predicting HPAI H5N1 pandemic strains, one strategy used in their design includes the development of formulations with the capacity of eliciting broad cross-protective immunity against multiple viral antigens. To this end we constructed a replication-defective recombinant adenovirus-based avian influenza virus vaccine (rAdv-AI) expressing the codon-optimized M2eX-HA-hCD40L and the M1-M2 fusion genes from HPAI H5N1 human isolate.
View Article and Find Full Text PDFA human influenza B/Lee/40 virus was cold-adapted by serial passages in embryonated chicken eggs, at progressively lower temperatures, for possible use as a future influenza B vaccine donor strain. Temperature sensitive and cold-adapted phenotypes were achieved as a consequence of the adaptation process. It was determined that the virus was attenuated in mice since the replication of the viral genome was significantly reduced in the lung.
View Article and Find Full Text PDF