R2R3 MYB transcription factors play regulatory roles in plant responses to various environmental stresses and nutrient deficiency. In this study, we isolated and designated OsMYB4P, an R2R3 MYB transcription factor, from rice (Oryza sativa L. 'Dongjin') under phosphate-deficient conditions.
View Article and Find Full Text PDFRab proteins play an essential role in regulating vesicular transport in eukaryotic cells. Previously, we characterized OsRab11, which in concert with OsGAP1 and OsGDI3 regulates vesicular trafficking from the trans-Golgi network (TGN) to the plasma membrane or vacuole. To further elucidate the physiological function of OsRab11 in plants, we performed yeast two-hybrid screens using OsRab11 as bait.
View Article and Find Full Text PDFThe ubiquitin-26S proteasome system is important in the quality control of intracellular proteins. The ubiquitin-26S proteasome system includes the E1 (ubiquitin activating), E2 (ubiquitin conjugating), and E3 (ubiquitin ligase) enzymes. U-box proteins are a derived version of RING-finger domains, which have E3 enzyme activity.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2011
GDP dissociation inhibitor (GDI) plays an essential role in regulating the state of bound nucleotides and subcellular localizations of Rab proteins. In our previous study, we showed that OsGDI3 facilitates the recycling of OsRab11 with a help of OsGAP1. In this study, we show that OsGDI3 complement the yeast sec19-1 mutant, a temperature-sensitive allele of the yeast GDI gene, suggesting that OsGDI3 is a functional ortholog of yeast GDI.
View Article and Find Full Text PDF2-Aminoindan-2-phosphonic acid (AIP), a specific competitive phenylalanine ammonia lyase (PAL) inhibitor was applied to a suspension cell culture of Cistanche deserticola. The effects of AIP treatment on cell growth, PAL activity, contents and yields of total phenolic compound, salidroside and four phenylethanoid glycosides (PheGs) are investigated. The results demonstrated that, 0.
View Article and Find Full Text PDFChromium halides were introduced for the sustainable production of hydroxymethylfurfural (HMF) from raw acorn biomass using an acidic ionic liquid. The free sugars (glucose and maltose) released by the acidic hydrolysis of the biomass were confirmed by the FT-IR absorption bands around 995-1014cm(-1) and HPLC. FESEM analysis showed that the acorn biomass contains various sizes of starch granules and their structures were severely changed by the acidic hydrolysis.
View Article and Find Full Text PDFMost high-affinity phosphate transporter genes (OsPTs) in rice were highly induced in roots when phosphate was depleted. OsPT1, however, was highly expressed in primary roots and leaves regardless of external phosphate concentrations. This finding was confirmed histochemically using transgenic rice plants that express the GUS reporter gene under the control of the OsPT1 promoter, which exhibited high GUS activity even in the phosphate sufficient condition.
View Article and Find Full Text PDFDehydroascorbate reductase (DHAR) is a biotechnologically or physiologically important reducing enzyme in the ascorbate-glutathione recycling reaction for most higher plants. A DHAR cDNA was isolated from sesame (Sesamum indicum L.) hairy roots, and its structure and biochemical properties were characterized to provide some information about its expressional and biochemical profiles in the hairy root cultures.
View Article and Find Full Text PDFA recombinant fungal phytase was produced by cultures of sesame hairy roots transformed with Agrobacterium rhizogenes, purified and its molecular properties were characterized. Its transcription level and the phytase production were rapidly increased after 4 weeks of the cultures, suggesting that its transcription and protein synthesis might concur. Western blot analysis provided evidence that the recombinant fungal phytase was secreted into the liquid culture medium of the hairy roots.
View Article and Find Full Text PDFA cDNA (SeMIPS1) encoding myo-inositol 1-phosphate synthase (EC 5.5.1.
View Article and Find Full Text PDF