Publications by authors named "Young-A Yoo"

TP53 tumor suppressor is frequently altered in lethal, castration-resistant prostate cancer (CRPC). However, to date there are no effective treatments that specifically target TP53 alterations. Using transcriptomic and metabolomic analyses, we have shown here that TP53-altered prostate cancer exhibits an increased dependency on asparagine (Asn) and overexpresses Asn synthetase (ASNS), the enzyme catalyzing the synthesis of Asn.

View Article and Find Full Text PDF

Unlabelled: Androgen receptor (AR) pathway inhibitors are the mainstay treatment for advanced prostate cancer, but resistance to therapy is common. Here, we used a CRISPR activation screen in metastatic castration-sensitive prostate cancer cells to identify genes that promote resistance to AR inhibitors. Activation of the TGFβ target gene paired-related homeobox2 (PRRX2) promoted enzalutamide resistance.

View Article and Find Full Text PDF

Neuroendocrine prostate cancer (NEPC) is an aggressive subtype of prostate cancer with poor prognosis, and there is a critical need for novel therapeutic approaches. NEPC is associated with molecular perturbation of several pathways, including amplification of . Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase involved in the pathogenesis of neuroblastoma and other malignancies where it cooperates with N-Myc.

View Article and Find Full Text PDF

Small molecules that directly target MYC and are also well tolerated in vivo will provide invaluable chemical probes and potential anti-cancer therapeutic agents. We developed a series of small-molecule MYC inhibitors that engage MYC inside cells, disrupt MYC/MAX dimers, and impair MYC-driven gene expression. The compounds enhance MYC phosphorylation on threonine-58, consequently increasing proteasome-mediated MYC degradation.

View Article and Find Full Text PDF

Background: Recurrence following androgen-deprivation therapy is associated with adverse clinical outcomes in prostate cancer, but the cellular origins and molecular mechanisms underlying this process are poorly defined. We previously identified a population of castration-resistant luminal progenitor cells expressing Bmi1 in the normal mouse prostate that can serve as a cancer cell-of-origin. Here, we investigate the potential of Bmi1-expressing tumor cells that survive castration to initiate recurrence in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • Genomic studies are identifying cancer-related genetic changes quickly, but validating their functions takes more time.
  • In this research, scientists engineered specific genetic alterations in benign prostate organoids from African American men to mimic prostate cancer development.
  • The manipulated organoids grew larger and faster and exhibited characteristics of cancer, indicating that such genetic changes can be effectively studied using human organoid cultures, which could lead to advancements in cancer research and treatment.
View Article and Find Full Text PDF

Identification of defined cell populations with stem/progenitor properties is key for understanding prostate development and tumorigenesis. Here we show that the polycomb repressor protein Bmi1 marks a population of castration-resistant luminal epithelial cells enriched in the mouse proximal prostate. We employ lineage tracing to show that these castration-resistant Bmi1-expressing cells (or CARBs) are capable of tissue regeneration and self-renewal.

View Article and Find Full Text PDF

Background: Researchers in recent studies have reported that the sonic hedgehog (Shh) signaling pathway plays a crucial role during tumorigenesis, angiogenesis and cellular differentiation. We investigated the clinical and pathological significances of the Shh pathway and of its lymphangiogenic components in non-small-cell lung cancer (NSCLC), namely, Shh, glioma-associated oncogene homolog zinc finger protein 1 (Gli1), lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) and vascular endothelial growth factor D (VEGF-D).

Methods: The expression of Shh, Gli1, LYVE-1 and VEGF-D in primary NSCLC tissue from 40 patients was examined using immunohistochemical assays, and relationships between expression and clinicopathological data, such as age, gender, histology, tumor size, nodal stage, visceral pleural invasion, lymphatic thromboembolism, recurrence and overall survival were investigated.

View Article and Find Full Text PDF

Human papillomavirus is the main cause of cervical cancer, yet other nonviral cofactors are also required for the disease. The uterine cervix is a hormone-responsive tissue, and female hormones have been implicated in cervical carcinogenesis. A transgenic mouse model expressing human papillomavirus oncogenes E6 and/or E7 has proven useful to study a mechanism of hormone actions in the context of this common malignancy.

View Article and Find Full Text PDF

p53, the major human tumor suppressor, appears to be related to sonic hedgehog (Shh)-Gli-mediated tumorigenesis. However, the role of p53 in tumor progression by the Shh-Gli signaling pathway is poorly understood. Herein we investigated the critical regulation of Gli3-p53 in tumorigenesis of colon cancer cells and the molecular mechanisms underlying these effects.

View Article and Find Full Text PDF

Activation of sonic hedgehog (Shh) signaling has been implicated in progression of a variety of tumors. In this study, we elucidated a role for Shh in the invasion of gastric tumors and determined the mechanism by which Shh is regulated. Immunohistochemical analysis of 178 primary human gastric tumor biopsies indicated that Shh expression was positively correlated with lymph node metastasis, high lymphatic vessel density, and poor prognosis.

View Article and Find Full Text PDF

Bone morphogenetic proteins (BMPs) have been implicated in tumorigenesis and metastatic progression in various types of cancer cells, but the role and cellular mechanism in the invasive phenotype of gastric cancer cells is not known. Herein, we determined the roles of phosphoinositide 3-kinase (PI3K)/AKT, extracellular signal-regulated protein kinase (ERK), nuclear factor (NF)-κB, and matrix metalloproteinase (MMP) expression in BMP-2-mediated metastatic function in gastric cancer. We found that stimulation of BMP-2 in gastric cancer cells enhanced the phosphorylation of AKT and ERK.

View Article and Find Full Text PDF

Up-regulation of bone morphogenetic proteins (BMPs) and their receptors by tumor is an important hallmark in cancer progression, as it contributes through autocrine and paracrine mechanisms to tumor development, invasion, and metastasis. Generally, increased motility and invasion are positively correlated with the epithelial-mesenchymal transition (EMT). The purpose of the present study was to determine whether BMP-2 signaling to induce gastric cancer cells to undergo EMT-mediated invasion might pass through the phosphatidylinositol 3-kinase (PI3K)/Akt pathway.

View Article and Find Full Text PDF

Although dysregulation of bone morphogenetic protein (BMP) signaling has been linked to various types of cancers, the relationship between abnormal activation of these signaling pathways and tumorigenesis is not clear. The purpose of the current study was to clarify how BMP2 is involved in colon cancer aggressiveness. The data showed that SW480 and DLD-1 cells displayed different responses to short- and long-term exposure to BMP2.

View Article and Find Full Text PDF

The interaction between mammary epithelial cells and their surrounding microenvironment are important in the development of the mammary gland. Thus, mesenchymal stem cells (MSCs), which retain pluripotency for various mesenchymal lineages, may provide a permissive environment for the morphologic alteration and differentiation of mammary epithelial cells. To this end, we investigated whether the interactions between mammary epithelial cells and human placenta-derived MSCs (hPMSC) affect the morphology, proliferation, and differentiation of epithelial cells in a co-culture system.

View Article and Find Full Text PDF

It is known that the activation of hedgehog (Hh) signaling is involved in the progression and invasion of various tumors, including gastric carcinoma. In this study, we investigated the impact of transforming growth factor (TGF)-beta signaling on the sonic hedgehog (Shh)-mediated invasion of gastric cancer cells. We found that higher concentrations of N-Shh enhanced cell motility and invasiveness in gastric cancer cells, whereas no increase was observed in cells that were treated with KAAD-cyclopamine (a Shh signaling inhibitor) or anti-Shh blocking antibodies.

View Article and Find Full Text PDF
Article Synopsis
  • Acquired resistance to tamoxifen in estrogen receptor-positive breast cancer is a significant challenge, with a connection to TGF-beta and activated Akt signaling.
  • Tamoxifen-resistant cells (Tam-R) show decreased TGF-beta1 secretion and response, along with increased phosphorylated Akt levels compared to non-resistant MCF-7 cells.
  • Activating Akt leads to tamoxifen resistance by inhibiting TGF-beta signaling, while blocking Akt enhances TGF-beta activation and limits cell growth in resistant cells.
View Article and Find Full Text PDF

The constitutive activation of JNK has been implicated in Ras-induced cellular transformation and activated JNK is down-regulated by the tumor suppressor protein, RASSF1A. In this study, we examined whether RASSF1A blocked oncogenic Ras-induced JNK activation. Exogenous expression of H-RasG12V induced JNK phosphorylation and RASSF1A co-transfected with H-RasG12V efficiently suppressed Ras-triggered JNK activation in various cancer cell lines.

View Article and Find Full Text PDF

Ribosomal proteins not only act as components of the translation apparatus but also regulate cell proliferation and apoptosis. A previous study reported that MRPL41 plays an important role in p53-dependent apoptosis. It also showed that MRPL41 arrests the cell cycle by stabilizing p27(Kip1) in the absence of p53.

View Article and Find Full Text PDF

The p53 protein arrests the cell cycle at the G1 phase when stabilized by the interaction between ribosomal proteins and HDM2 under growth-inhibitory conditions. Meanwhile, p53, when translocated to the mitochondria in response to cell death signals, induces apoptosis via transcription-independent mechanisms. In this report, we demonstrate that the mitochondrial ribosomal protein L41 (MRPL41) enhances p53 stability and contributes to p53-induced apoptosis in response to growth-inhibitory conditions such as actinomycin D treatment and serum starvation.

View Article and Find Full Text PDF

A Salmonella enterica Serotype Montevideo is described that harbors DHA-1, a plasmid-mediated AmpC beta-lactamase. The organism was isolated from blood and stool specimens of a 3-yr-old girl. The isolate was multi-drug resistant, including cefoxitin, gentamicin, piperacillin, cefuroxime, ceftazidime, and cefotaxime, and an antagonism was observed between cefoxitin and oxyiminocephalosporins.

View Article and Find Full Text PDF

To develop a new radiosensitizer, we screened a chemical library and selected one chemical reagent, N'-(phenyl-pyridin-2-yl-methylene)-hydrazine carbodithioic acid methyl ester (PHCM), which was already known to have antifungal and antimicrobial properties. PHCM enhanced radiation-induced cell death and its mean calculated dose enhancement ratio was 1.17.

View Article and Find Full Text PDF