According to the implementing arrangement between the Japan Atomic Energy Agency (JAEA) and the Korea Atomic Energy Research Institute (KAERI) in the field of radiation protection and environmental radiation monitoring, a joint survey program was performed to assess ground deposition of radioactive cesium in areas surrounding the Fukushima Daiichi Nuclear Power Plants. The purpose of this joint survey was to evaluate the field applications of the developed survey systems and methodologies. Understanding the performance of each system within a cesium-deposited contaminated zone is important for ensuring an appropriate response following a nuclear accident.
View Article and Find Full Text PDFThe site characterization around the Fukushima Daiichi nuclear power plant (FDNPP) was conducted to measure the dose rate of radioactive cesium using mobile gamma-ray spectrometry through a backpack survey based on a LaBr3(Ce) detector. Four sites were selected in the Fukushima prefecture with diverse dose rate levels in residence and non-residence areas. One reference site in Sendai city was also designated with a low dose rate in comparison with sites in the Fukushima prefecture.
View Article and Find Full Text PDFGround-based gamma-ray spectrometry using a LaBr(Ce) detector was conducted to assess radioactive cesium deposition in soil contaminated by the accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in Japan. Five sites, including a reference site with relatively low contamination, were selected as having different levels of ambient dose rate due to significant effects of radioactive fallout of Cs and Cs. According to ICRU Report 53, the radioactivity in the ground and dose rate at 1 m above the ground were determined from the measured net count rates of gamma-rays induced from radioactive cesium.
View Article and Find Full Text PDFAn environmental radiation survey using a gamma-ray spectrometer is used to rapidly detect radioactive contamination over a wide area of ground that was released from nuclear events. For the successful application of a gamma-ray spectrometer to the calculation of the radioactivity concentration in the ground and the dose rate at 1 m above the ground, it is necessary to build a calibration procedure to obtain the counting efficiency at the in situ measurement, which means in situ calibration factor to report the calculation results from the measured net count rate according to the diverse detection geometries. This study is focused on the development of a program to calculate the in situ calibration factor and report the survey results in the environmental radiation surveys using three kinds of gamma-ray spectrometers, which have been widely used in the field of in situ measurements: a coaxial HPGe detector, cylindrical NaI(Tl), and rectangular NaI(Tl).
View Article and Find Full Text PDFTo expand the application of dose rate spectroscopy to the environment, the method using an environmental radiation monitor (ERM) based on a 3' × 3' NaI(Tl) detector was used to perform real-time monitoring of the dose rate and radioactivity for detected gamma nuclides in the ground around an ERM. Full-energy absorption peaks in the energy spectrum for dose rate were first identified to calculate the individual dose rates of Bi, Ac, Tl, and K distributed in the ground through interference correction because of the finite energy resolution of the NaI(Tl) detector used in an ERM. The radioactivity of the four natural radionuclides was then calculated from the in situ calibration factor-that is, the dose rate per unit curie-of the used ERM for the geometry of the ground in infinite half-space, which was theoretically estimated by Monte Carlo simulation.
View Article and Find Full Text PDFWe analyzed the consumer goods containing NORM by ICP-MS and evaluated the external dose. To evaluate the external dose, we assumed the small room model as irradiation scenario and calculated the specific effective dose rate using MCNPX code. The external doses for twenty goods are less than 1 mSv considering the specific effective dose rates and usage quantities.
View Article and Find Full Text PDFThe simultaneous determination of the depth of an embedded source and its radioactivity in the medium at the environmental surveys is a very useful and advisable method for an in-situ gamma-ray measurement with respect to the time and cost constraint. An algorithm for the determination of the source depth and its radioactivity in the medium was developed using the information on the uncollided photon fluences and measured net count rates, which mean not scattered fluences and background subtracted count rate, at the detector positions. Uncollided photon fluences were calculated at several source depths in the medium as well as at detector positions from the Monte Carlo N-Particle (MCNP) simulation.
View Article and Find Full Text PDFAn analytical procedure for detecting Ra in naturally occurring radioactive materials (NORMs) using a liquid scintillation counter (LSC) was developed and validated with reference materials (zircon matrix, bauxite matrix, coal fly ash, and phosphogypsum) that represent typical NORMs. The Ra was released from samples by a fusion method and was separated using sulfate-coprecipitation. Next, a Rn-emanation technique was applied for the determination of Ra.
View Article and Find Full Text PDFAn investigation into the distribution of natural radionuclides and radioactive secular equilibrium in raw materials and by-products in a domestic distribution was conducted to deduce the optimum conditions for the analytical evaluation of natural radionuclides for (238)U, (226)Ra, and (232)Th using a gamma-ray spectrometer and inductively coupled plasma mass spectrometer (ICP-MS). The range of the specific activities of natural radionuclides was first evaluated by analyzing (228)Ac and (214)Bi, which are (232)Th and (226)Ra indicators, respectively, in about 100 samples of raw materials and by-products through a gamma-ray spectrometer. From further experiments using several samples selected based on the results of the distribution of natural radionuclides, the validation of their analytical evaluations for the indirect measurements using a gamma-ray spectrometer and direct measurements using ICP-MS was assured by comparing their results.
View Article and Find Full Text PDF