Soluble methane monooxygenase (sMMO) oxidizes a wide range of carbon feedstocks (C1 to C8) directly using intracellular NADH and is a useful means in developing green routes for industrial manufacturing of chemicals. However, the high-throughput biosynthesis of active recombinant sMMO and the ensuing catalytic oxidation have so far been unsuccessful due to the structural and functional complexity of sMMO, comprised of three functionally complementary components, which remains a major challenge for its industrial applications. Here we develop a catalytically active miniature of sMMO (mini-sMMO), with a turnover frequency of 0.
View Article and Find Full Text PDFNonfullerene-acceptor-based organic solar cells (NFA-OSCs) are now set off to the 20% power conversion efficiency milestone. To achieve this, minimizing all loss channels, including nonradiative photovoltage losses, seems a necessity. Nonradiative recombination, to a great extent, is known to be an inherent material property due to vibrationally induced decay of charge-transfer (CT) states or their back electron transfer to the triplet excitons.
View Article and Find Full Text PDFA series of ionically interconnected polypyrrole (PPy) films are fabricated through two-monomer-connected-precursor polymerization by varying diacid linkers, thereby significantly influencing the crystalline morphology and electrical properties. The structure obtained using 1,5-napthalenedisulfonic acid (PPy-Nap) as a fused aromatic linker exhibits a higher electrical conductivity (∼78 S cm) than that (6.7 S cm) without a linker (PPy-ref).
View Article and Find Full Text PDFThe formation of stabilized radical anions on organic materials in the solid state is an important issue in radical-based fundamental research and various applications. Herein, for the first time, we report on gas-induced ion-free stable radical anion formation (SRAF) of organic semiconducting solids with high gas selectivities through the use of organic field-effect transistor (OFET) gas sensors and electron spin resonance spectroscopy. In contrast to the previously reported SRAF, which requires either anionic analytes in solution and/or cationic substituents on π-electron-deficient aromatic cores, NDI-EWGs consist of an n-type semiconducting naphthalene diimide (NDI) and various electron-withdrawing groups (EWGs) that exhibit non-ion-involved, gas-selective SRAF in the solid state.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2019
Low- k amorphous fluorinated polymers such as poly(perfluoroalkenylvinyl ether) (CYTOP) have widely been used as gate dielectrics for organic field-effect transistors (OFETs) because of their strong hydrophobicity to prevent the penetration of moisture and other contaminants and their perfect solvent orthogonality with organic semiconductors. Here, we report a new functionality of the fluorinated low- k polymer dielectrics, which is spontaneous p doping at the dielectric-semiconductor interface in OFETs. This functionality makes the ambipolar charge transport a unipolar p type.
View Article and Find Full Text PDFA face-on oriented and p-doped semicrystalline conjugated polymer, poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c][1,2,5]-thiadiazole)] (PPDT2FBT), was studied as a hole-transport layer (HTL) in methylammonium lead triiodide-based perovskite solar cells (PVSCs). PPDT2FBT exhibits a mid-band gap (1.7 eV), high vertical hole mobility (7.
View Article and Find Full Text PDFCancer theragnosis using a single multimodality agent is the next mainstay of modern cancer diagnosis, treatment, and management, but a clinically feasible agent with in vivo cancer targeting and theragnostic efficacy has not yet been developed. A new type of cancer theragnostic agent is reported, based on gold magnetism that is induced on a cancer-targeting protein particle carrier. Superparamagnetic gold-nanoparticle clusters (named SPAuNCs) are synthesized on a viral capsid particle that is engineered to present peptide ligands targeting a tumor cell receptor (TCR).
View Article and Find Full Text PDFFilling the lowest quantum state of the conduction band of colloidal nanocrystals with a single electron, which is analogous to the filling the lowest unoccupied molecular orbital in a molecule with a single electron, has attracted much attention due to the possibility of harnessing the electron spin for potential spin-based applications. The quantized energy levels of the artificial atom, in principle, make it possible for a nanocrystal to be filled with an electron if the Fermi-energy level is optimally tuned during the nanocrystal growth. Here, we report the singly occupied quantum state (SOQS) and doubly occupied quantum state (DOQS) of a colloidal nanocrystal in steady state under ambient conditions.
View Article and Find Full Text PDFIn order to realize deoxyribonucleic acid (DNA)-based molecular electronics, chemical modifications of DNA are needed to improve electrical conductivity. We developed a novel method utilizing the incorporation of Au(III) ions into DNA bases to alter their electronic properties. When Au(III) ions were incorporated proportionally into DNA bases, conductance increased up to an Au(III) content of 0.
View Article and Find Full Text PDFIn this review, the optical and structural properties of biomaterials are discussed. First, we demonstrate the optical and structural properties of natural and plasma-treated DNA, using UV-visible absorption, circular dichroism (CD), and Raman spectroscopy. Fluorescence and lasing action in the dye-doped DNA-surfactant complex are also explained.
View Article and Find Full Text PDFA tetranuclear Fe(III)(2)Mn(III)(2) compound was prepared using highly blocked precursors. The well-isolated molecular entity associated with appropriate magnetic anisotropy allows for single-molecule magnet behavior.
View Article and Find Full Text PDFDNA-mediated gold nanoparticles were prepared by chemical reduction of DNA-Au(III) complex. The DNA-Au(III) was first formed by reacting DNA with HAuCl₄ at a pH of 5.6.
View Article and Find Full Text PDFRoom-temperature ferromagnetism of an organic discotic liquid crystalline compound (DLC) is achieved by intercalation at low levels with paramagnetic iron(III) phthalocyanine (see figure). These ferromagnetic DLCs are very similar to the so-called dilute magnetic semiconductors of inorganic nature. It is expected that this novel approach will open up a new way of preparing the high-temperature organic ferromagnetic compounds needed for molecular spintronics.
View Article and Find Full Text PDF