Anthocyanin accumulation is responsible for the coloration of apple fruit, and their accumulation depends on the expression of anthocyanin biosynthesis-related genes. Light is an environmental stimulus that induces fruit color by regulating genes involved in the anthocyanin biosynthesis pathway. In this study, the roles of light and genetic factors on fruit coloration and anthocyanin accumulation in apple fruit were investigated.
View Article and Find Full Text PDFThe present study deals with structural transformations induced by high-energy ball-milling of an amorphous Fe90Zr10 alloy prepared by melt-spinning. The amorphous melt-spun ribbons were found to undergo crystallization into BCC alpha-Fe(Zr) nanocrystallites under high-energy ball milling. The decomposition degree of the amorphous phase increased with increasing milling time and intensity.
View Article and Find Full Text PDFOne of the possible reasons for low conductivity of in-situ produced dispersion strengthened copper matrix composites may be the incompleteness of the reaction between the initial reactants that remain in a state of solid solutions in the copper matrix. We report in-situ synthesis of TiB2-Cu composites starting from the powder mixtures with the limited content of copper ensuring a high probability of contact between the particles of titanium and boron and, as a result, their full conversion into the TiB2 phase. The nanoparticles were formed in a self-propagating mode in the ball milled Ti-B-Cu powder mixture corresponding to 57 vol.
View Article and Find Full Text PDFIn this contribution the homogeneity of mechanically alloyed Fe-Cu powders for two different compositions (Fe-10 and Fe-2.5at%Cu) has been systematically characterised by atom probe tomography. Since Fe-Cu exhibits the Invar effect, it is among the most attractive systems for technical application.
View Article and Find Full Text PDFThe preparation of transmission electron microscopy (TEM) and atom probe-field ion microscopy (AP-FIM) specimens from mechanically alloyed Ti-Cu-Ni-Sn powder has been explored. Applying the focused ion beam (FIB) based in situ lift-out technique, it has been demonstrated that specimen preparation can be carried on single micrometre-sized powder particles without the use of any embedding media. Since the particles did not incorporate any micropores, as revealed by cross-sectioning, the standard procedure known for bulk samples could be simply implemented to the powder material.
View Article and Find Full Text PDFFocused ion-beam milling has been applied to prepare needle-shaped atom probe tomography specimens from mechanically alloyed powders without the use of embedding media. The lift-out technique known from transmission electron microscopy specimen preparation was modified to cut micron-sized square cross-sectional blanks out of single powder particles. A sequence of rectangular cuts and annular milling showed the highest efficiency for sharpening the blanks to tips.
View Article and Find Full Text PDF