This study validates the attributes of the mineral carbonation process employing circulating fluidized bed combustion (CFBC) ash, which is generated from thermal power plants, as a medium for carbon storage. Furthermore, an examination was conducted on the properties of construction materials produced through the recycling of carbonated circulating fluidized bed combustion (CFBC) ash. The carbonation characteristics of circulating fluidized bed combustion (CFBC) ash were investigated by analyzing the impact of CO flow rate and solid content.
View Article and Find Full Text PDFThe presence of inorganic and organic substances may alter the physicochemical properties of iron (Fe) salt precipitates, thereby stabilizing the antimony (Sb) oxyanions in potable water during the chemical treatment process. Therefore, the present study aimed to examine the surface characteristics, size of Fe flocs and coagulation performance of Sb oxyanions under different aqueous matrices. The results showed that surface properties of Fe flocs significantly varies with pH in both Sb(III, V) suspensions, thereby increasing the mobility of Sb(V) ions in alkaline conditions.
View Article and Find Full Text PDFBallasted flocculation (BF) is an efficient way to remove the turbidity from surface water. The objective of the present study is to optimize the ballast (magnetite), coagulant (poly aluminum chloride) concentration and pH for efficient turbidity removal from surface water. To do this, the sludge produced from an optimized dose of a BF treatment was utilized for the production of lightweight (LW) aggregates by combining it with hard clay and sewage sludge.
View Article and Find Full Text PDFArsenic (As)-laden wastewater may pose a threat to biodiversity when released into soil and water bodies without treatment. The current study investigated the sorption properties of both As(III, V) oxyanions onto iron hydroxide (FHO) by chemical coagulation. The potential mechanisms were identified using the adsorption models, ζ-potential, X-ray diffraction (XRD) and Fourier Transform Infrared Spectrometry (FT-IR) analysis.
View Article and Find Full Text PDFThe widespread usage of nano-copper oxide particles (nano-CuO) in several industrial products and applications raises concerns about their release into water bodies. Thus, their elimination from drinking water is essential to reduce the risk to human health. This work investigated the removal of nano-CuO from pure water and montmorillonite clay (MC) suspensions using poly aluminum ferric chloride (PAFC) as well as cationic polyacrylamide (PAM) by the coagulation-flocculation-sedimentation (C/F/S) process.
View Article and Find Full Text PDFThe chronic ingestion of arsenic (As) contaminated water has raised significant health concerns worldwide. Iron-based coagulants have been widely used to remove As oxyanions from drinking water sources. In addition, the system's ability to lower As within the maximum acceptable contamination level (MCL) is critical for protecting human health from its detrimental effects.
View Article and Find Full Text PDFThe purpose of this study is to experimentally design the drying, calcination, and sintering processes of artificial lightweight aggregates through the orthogonal array, to expand the data using the results, and to model the manufacturing process of lightweight aggregates through machine-learning techniques. The experimental design of the process consisted of L(36), which means that 3 × 6 data can be obtained in 18 experiments using an orthogonal array design. After the experiment, the data were expanded to 486 instances and trained by several machine-learning techniques such as linear regression, random forest, and support vector regression (SVR).
View Article and Find Full Text PDFMaterials (Basel)
January 2019
The purpose of this study is to compare the bloating mechanism of artificial lightweight aggregate under sintering and rapid sintering conditions to identify the factors behind the bloating of the lightweight aggregate under these sintering conditions, and to find suitable temperature ramping conditions. The aggregate had an average particle size of 10 mm as formed using acid clay, and it was fired by a rapid sintering method and a normal sintering method. The bulk density and water absorption ratio of the specimen were measured, and the cross section was observed.
View Article and Find Full Text PDF