Annual repeat influenza vaccination raises concerns about protective efficacy against mismatched viruses. We investigated the impact of heterologous prime-boost vaccination on inducing cross protection by designing recombinant influenza viruses with chimeric hemagglutinin (HA) carrying M2 extracellular domains (M2e-HA). Heterologous prime-boost vaccination of C57BL/6 mice with M2e-HA chimeric virus more effectively induced M2e and HA stalk specific IgG antibodies correlating with cross protection than homologous prime-boost vaccination.
View Article and Find Full Text PDFHemagglutinin (HA)-based current vaccines provide suboptimum cross protection. Influenza A virus contains an ion channel protein M2 conserved extracellular domain (M2e), a target for developing universal vaccines. Here we generated reassortant influenza virus rgH3N2 4xM2e virus (HA and NA from A/Switzerland/9715293/2013/(H3N2)) expressing chimeric 4xM2e-HA fusion proteins with 4xM2e epitopes inserted into the H3 HA N-terminus.
View Article and Find Full Text PDFPre-fusion stabilizing mutations (DS-Cav1) in soluble fusion (F) proteins of human respiratory syncytial virus (RSV) were previously reported. Here we investigated the antigenic and immunogenic properties of pre-fusion like RSV F proteins on enveloped virus-like particles (VLP). Additional mutations were introduced to DS-Cav1 (F-dcmTM VLP); fusion peptide deletion and cleavage mutation site 1 (F1d-dcmTM VLP) or both sites (F12d-dcmTM VLP).
View Article and Find Full Text PDFFormalin-inactivated respiratory syncytial virus (RSV) vaccination causes vaccine-enhanced disease (VED) after RSV infection. It is considered that vaccine platforms enabling endogenous synthesis of RSV immunogens would induce favorable immune responses than non-replicating subunit vaccines in avoiding VED. Here, we investigated the immunogenicity, protection, and disease in mice after vaccination with RSV fusion protein (F) encoding plasmid DNA (F-DNA) or virus-like particles presenting RSV F (F-VLP).
View Article and Find Full Text PDFAlum adjuvanted formalin-inactivated respiratory syncytial virus (RSV) vaccination resulted in enhanced respiratory disease in young children upon natural infection. Here, we investigated the adjuvant effects of monophosphoryl lipid A (MPL) and oligodeoxynucleotide CpG (CpG) on vaccine-enhanced respiratory disease after fusion (F) protein prime vaccination and RSV challenge in infant and adult mouse models. Combination CpG + MPL adjuvant in RSV F protein single dose priming of infant and adult age mice was found to promote the induction of IgG2a isotype antibodies and neutralizing activity, and lung viral clearance after challenge.
View Article and Find Full Text PDFClinical trials with alum-adjuvanted formalin-inactivated human respiratory syncytial virus (FI-RSV) vaccine failed in children due to vaccine-enhanced disease upon RSV infection. In this study, we found that inactivated, detergent-split RSV vaccine (Split) displayed higher reactivity against neutralizing antibodies in vitro and less histopathology in primed adult mice after challenge, compared to FI-RSV. The immunogenicity and efficacy of FI-RSV and Split RSV vaccine were further determined in 2 weeks old mice after a single dose in the absence or presence of monophosphoryl lipid A (MPL) + CpG combination adjuvant.
View Article and Find Full Text PDFIntramuscular (IM) vaccination with formalin-inactivated respiratory syncytial virus (FI-RSV) failed in clinical trials due to vaccine-enhanced respiratory disease. To test the efficacy of skin vaccination against respiratory syncytial virus (RSV), we investigated the immunogenicity, efficacy, and inflammatory disease after microneedle (MN) patch delivery of FI-RSV vaccine (FI-RSV MN) to the mouse skin with or without an adjuvant of monophosphoryl lipid A (MPL). Compared to IM vaccination, MN patch delivery of FI-RSV was more effective in clearing lung viral loads and preventing weight loss, and in diminishing inflammation, infiltrating immune cells, and T helper type 2 (Th2) CD4 T cell responses after RSV challenge.
View Article and Find Full Text PDFInfluenza virus M2 protein has a highly conserved ectodomain (M2e) as a cross-protective antigenic target. We investigated the antigenic and immunogenic properties of tandem repeat M2e (5xM2e) proteins and virus-like particles (5xM2e VLP) to better understand how VLP and protein platform vaccines induce innate and protective adaptive immune responses. Despite the high antigenic properties of 5xM2e proteins, the 5xM2e VLP was superior to 5xM2e proteins in inducing IgG2a isotype antibodies, T cell responses, plasma cells and germinal center B cells as well as in conferring cross protection.
View Article and Find Full Text PDFCurrent licensed adjuvants including aluminum hydroxide (alum) bias immune responses toward T helper type 2 (Th2) immune responses. We tested whether virus-like particles presenting flagellin (Flag VLP) exhibit adjuvant effects on eliciting Th1 type immune responses and improving the efficacy of poor immunogenic tandem repeat M2e (M2e5x) protein vaccine against influenza virus. Co-immunization of mice with Flag VLP and M2e5x protein vaccine induced significantly higher levels of IgG2a isotype (Th1) antibodies in sera and mucosal sites, effector CD4 T cells secreting IFN-γ and granzyme B, and more effective lung viral clearance and protection compared to alum adjuvant.
View Article and Find Full Text PDFThe complement pathway is involved in eliminating antigen immune complexes. However, the role of the C3 complement system remains largely unknown in influenza virus M2 extracellular (M2e) domain or hemagglutinin (HA) vaccine-mediated protection after vaccination. Using a C3 knockout (C3 KO) mouse model, we found that complement protein C3 was required for effective induction of immune responses to vaccination with M2e-based or HA-based vaccines, which include isotype class-switched antibodies and effector CD4 and CD8 T cell responses.
View Article and Find Full Text PDFCurrent influenza vaccines provide limited protection against circulating influenza A viruses. A universal influenza vaccine will eliminate the intrinsic limitations of the seasonal flu vaccines. Here we report methodology to generate double-layered protein nanoparticles as a universal influenza vaccine.
View Article and Find Full Text PDFCellular immune correlates conferring protection against respiratory syncytial virus (RSV) but preventing vaccine-enhanced respiratory disease largely remain unclear. We investigated cellular immune correlates that contribute to preventing disease against human respiratory syncytial virus (RSV) by nanoparticle vaccine delivery. Formalin-inactivated RSV (FI-RSV) vaccines and virus-like nanoparticles carrying RSV fusion proteins (F VLP) were investigated in mice.
View Article and Find Full Text PDFHeterologous prime boost with DNA and recombinant modified vaccinia virus Ankara (rMVA) vaccines is considered as a promising vaccination approach against human immunodeficiency virus (HIV-1). To further enhance the efficacy of DNA-rMVA vaccination, we investigated humoral and cellular immune responses in mice after three sequential immunizations with DNA, a combination of DNA and virus-like particles (VLP), and rMVA expressing HIV-1 89.6 gp120 envelope proteins (Env).
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) fusion (F) protein is suggested to be a protective vaccine target although its efficacy and safety concerns remain not well understood. We investigated immunogenicity, efficacy, and safety of F proteins in a soluble form or on virus-like particle (F-VLP). F VLP preferentially elicited IgG2a antibody and T helper type 1 (Th1) immune responses whereas F protein induced IgG1 isotype and Th2 responses.
View Article and Find Full Text PDFFormalin inactivated respiratory syncytial virus (FI-RSV) vaccination caused vaccine-enhanced respiratory disease (ERD) upon exposure to RSV in children. Virus-like particles presenting RSV F fusion protein (F VLP) are known to increase T helper type-1 (Th1) immune responses and avoid ERD in animal models. We hypothesized that F VLP would prime immune responses preventing ERD upon subsequent exposure to ERD-prone FI-RSV.
View Article and Find Full Text PDFVaccine-enhanced disease has been a major obstacle in developing a safe vaccine against respiratory syncytial virus (RSV). This study demonstrates the immunogenicity, efficacy, and safety of virus-like particle (VLP) vaccines containing RSV F (F VLP), G (G VLP), or F and G proteins (FG VLP) in cotton rats. RSV specific antibodies were effectively induced by vaccination of cotton rats with F VLP or FG VLP vaccines.
View Article and Find Full Text PDFA safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) is well-known for inducing vaccine-enhanced respiratory disease after vaccination of young children with formalin-inactivated RSV (FI-RSV) in alum formulation. Here, we investigated alum adjuvant effects on protection and disease after FI-RSV immunization with or without alum in comparison with live RSV reinfections. Despite viral clearance, live RSV reinfections caused weight loss and substantial pulmonary inflammation probably due to high levels of RSV specific IFN-γ+IL4-, IFN-γ-TNF-α+, IFN-γ+TNF-α- effector CD4 and CD8 T cells.
View Article and Find Full Text PDFUnlabelled: There is no licensed vaccine against respiratory syncytial virus (RSV) since the failure of formalin-inactivated RSV (FI-RSV) due to its vaccine-enhanced disease. We investigated immune correlates conferring protection without causing disease after intranasal immunization with virus-like particle vaccine containing the RSV fusion protein (F VLP) in comparison to FI-RSV and live RSV. Upon RSV challenge, FI-RSV immune mice showed severe weight loss, eosinophilia, and histopathology, and RSV reinfection also caused substantial RSV disease despite their viral clearance.
View Article and Find Full Text PDFNatural infection and then recovery are considered to be the most effective means for hosts to build protective immunity. Thus, mimicking natural infection of pathogens, many live attenuated vaccines such as influenza virus, and yellow fever vaccine 17D were developed and have been successfully used to induce protective immunity. However, humans fail to generate long-term protective immunity to some pathogens after natural infection such as influenza virus, respiratory syncytial virus (RSV), and human immunodeficiency virus (HIV) even if they survive initial infections.
View Article and Find Full Text PDFThe mechanisms of protection against respiratory syncytial virus (RSV) are poorly understood. Virus-like nanoparticles expressing RSV glycoproteins (eg, a combination of fusion and glycoprotein virus-like nanoparticles [FG VLPs]) have been suggested to be a promising RSV vaccine candidate. To understand the roles of alveolar macrophages (AMs) in inducing long-term protection, mice that were 12 months earlier vaccinated with formalin-inactivated RSV (FI-RSV) or FG VLPs were treated with clodronate liposome prior to RSV infection.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) is the major leading cause of infantile viral bronchiolitis. However, cellular phenotypes contributing to the RSV protection and vaccine-enhanced disease remain largely unknown. Upon RSV challenge, we analyzed phenotypes and cellularity in the lung of mice that were naïve, immunized with formalin inactivated RSV (FI-RSV), or re-infected with RSV.
View Article and Find Full Text PDFBiotechnol Biotechnol Equip
November 2014
Recently, with the rapid development of related ubiquitous industries, ubiquitous-Zone (u-Zone) development is being promoted to build a ubiquitous environment within a specific area. From a health care system perspective, in particular, u-Zone is expected to contribute to reducing cost and effort to manage patients' condition such as in-patients, addiction patients and mental patients. In contrast, the current health care system only targets specific persons or continues to expand the internal system of hospitals.
View Article and Find Full Text PDF