Backgroud: Although the scallop sign is considered the most important risk factor for extensor tendon ruptures (ETRs) in patients with osteoarthritis of the distal radioulnar joint (DRUJ), previous reports provide a limited understanding of the changes at DRUJ, as risk factors were examined in plain radiographs of the wrist. The aim of this study was to assess the changes of DRUJ using axial images of computed tomography (CT) in patients with DRUJ osteoarthritis and associated ETRs and to evaluate the relationship between the changes of DRUJ and ETRs.
Methods: Twelve patients with ETRs due to osteoarthritis of the DRUJ were enrolled.
J Hand Surg Asian Pac Vol
March 2020
Extensor tendon rupture of the finger is a very rare complication of Kienböck's disease. However, advanced Kienböck's disease can cause an attritional rupture of extensor tendons due to displaced lunate fragment. An extensor tendon of the thumb is frequently damaged in the distal radial fracture, and an extensor tendon of the fifth finger is mainly ruptured in arthritis of distal radio-ulnar joint.
View Article and Find Full Text PDFBackground: Little is known about capsule endoscopy (CE) findings in patients with intestinal tuberculosis who exhibit small bowel lesions. The aim of the present study was to distinguish between Crohn's disease (CD) and intestinal tuberculosis based on CE findings.
Methods: Findings from 55 patients, who underwent CE using PillCam SB CE (Given Imaging, Yoqneam, Israel) between February 2003 and June 2015, were retrospectively analyzed.
Knee Surg Sports Traumatol Arthrosc
May 2020
Purpose: This study aimed to determine which preoperative factors affect the postoperative change in the joint line convergence angle (JLCA) by preoperatively quantifying soft tissue laxity.
Methods: Thirty-four patients who underwent medial open-wedge high tibial osteotomy (HTO) with a navigation were analysed. The JLCA change after HTO was calculated using standing long-bone anteroposterior radiographs taken preoperatively and 6 months postoperatively.
Background: The sagittal alignment of the spine and pelvis is not only closely related to the overall posture of the body but also to the evaluation and treatment of spine disease. In the last few years, the EOS imaging system, a new low-dose radiation X-ray device, became available for sagittal alignment assessment. However, there has been little research on the reliability of EOS.
View Article and Find Full Text PDFBone repair in the critical size defect zone using 3D hydrogel scaffold is still a challenge in tissue engineering field. A novel type of hydrogel scaffold combining ceramic and polymer materials, therefore, was fabricated to meet this challenge. In this study, oxidized alginate-gelatin-biphasic calcium phosphate (OxAlg-Gel-BCP) and spherical hydroxyapatite (HAp) granules encapsulated OxAlg-Gel-BCP hydrogel complex were fabricated using freeze-drying method.
View Article and Find Full Text PDFThere is currently an increased interest in studying the extracellular matrix (ECM) and its potential applications for tissue engineering and regenerative medicine. The ECM plays an important role by providing adhesive substrates to cells during migration, morphogenesis, differentiation, and homeostasis by signaling biochemical and biomechanical cues to cells. In this study, the ECM was incorporated into hydroxyapatite by implanting sponge replica scaffolds in subcutaneous pockets in rats, and the implants were tested for bone regeneration potential.
View Article and Find Full Text PDFBone regeneration is a coordinated process mainly regulated by multiple growth factors. Vascular endothelial growth factor (VEGF) stimulates angiogenesis and bone morphogenetic proteins (BMPs) induce osteogenesis during bone healing process. The aim of this study was to investigate how these growth factors released locally and sustainably from nano-cellulose (NC) simultaneously effect bone formation.
View Article and Find Full Text PDFThe increasing interest in chitosan-based biomaterials stems from its desirable physicochemical properties. Although calcium phosphates have been mixed with chitosan to form injectable scaffolds, its application for bone tissue engineering has been limited and is still being explored to improve its clinical translatability. We report a biocomposite comprised of preformed chitosan cryogel with dispersed biphasic calcium phosphate that can flow under moderate pressure allowing passage through a small gauge needle, while maintaining sufficient integrity and strength during injection for gel recovery.
View Article and Find Full Text PDFA composite scaffold of gelatin (Gel)-pectin (Pec)-biphasic calcium phosphate (BCP) was fabricated for the successful delivery of growth factors. Bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) were coated on the Gel-Pec-BCP surface to investigate of effect of them on bone healing. Surface morphology was investigated by scanning electron microscopy, and BCP dispersion in the hydrogel scaffolds was measured by energy dispersive X-ray spectroscopy.
View Article and Find Full Text PDFWe investigated the sweating response during passive heating (partial submersion up to the umbilical line in 42±0.5℃ water, 30 min) after summer and winter seasonal acclimatization (SA). Testing was performed in July during the summer, 2011 [summer-SA; temp, 25.
View Article and Find Full Text PDFBiphasic calcium phosphate (BCP) nanoparticles were loaded with porous gelatin-pectin (GE-P) scaffolds. The biodegradable gelatin-pectin-BCP scaffolds were produced as miscible mixtures with well-defined interconnected pores to facilitate osteoconductivity and enhance bone formation. It was observed that the compressive strength increased with the loading of BCP nanoparticles.
View Article and Find Full Text PDFThis study aims to demonstrate the morphology and in vitro biocompatibility of neat and surface-modified hydroxyapatite sponge scaffold (SM-HASS) which was fabricated using a sponge replica method, and compared with the commercially available demineralized freeze-dried bone allograft (DFDBA). Surface-modifications were done by coating the surface area of the neat hydroxyapatite sponge scaffold (HASS) with either gelatin alone (HASS/G) or gelatin and BMP-2 growth factor (HASS/G+B). Scanning electron microscope (SEM), Fourier transform infrared (FTIR), porosity, pore size distribution, and compressive strength analyses showed that the addition of gelatin in HASS/G produced a morphologically and structurally similar scaffold to that of the allograft.
View Article and Find Full Text PDFTissue Eng Part A
December 2014
To confirm the effect of recombinant human bone morphogenetic protein-2 (BMP-2) for bone regeneration, BMP-2-loaded polycaprolactone (PCL)-gelatin (Gel)-biphasic calcium phosphate (BCP) fibrous scaffolds were fabricated using the electrospinning method. The electrospinning process to incorporate BCP nanoparticles into the PCL-Gel scaffolds yielded an extracellular matrix-like microstructure that was a hybrid system composed of nano- and micro-sized fibers. BMP-2 was homogeneously loaded on the PCL-Gel-BCP scaffolds for enhanced induction of bone growth.
View Article and Find Full Text PDFRelatively few studies have investigated peripheral sweating mechanisms of long-distance runners. The aim of this study was to compare peripheral sweating mechanisms in male long-distance runners, and sedentary counterparts. Thirty six subjects, including 20 sedentary controls and 16 long-distance runners (with 7-12 years of athletic training, average 9.
View Article and Find Full Text PDFThe aim of the present study was to quantitatively investigate the age and sex-related differences in sudomotor function in healthy humans. The quantitative sudomotor axon reflex test (QSART) with iontophoresis (2 mA for 5 min) and 10% acetylcholine (ACh) was performed to determine axon reflex-mediated (AXR), with and without iotophoresis (AXR(1) and AXR(2), respectively), and directly activated (DIR) sweating. All experiments were conducted under thermoneutral conditions (temperature 24.
View Article and Find Full Text PDFIn this study, the optimized formulations of polycaprolactone (PCL) combined with poly(lactic-co-glycolic acid) (PLGA), gelatin (GEL), and biphasic calcium phosphate (BCP) were analyzed in terms of cytocompatibility with bone-related cells, hemocompatibility, and in vivo bone-regenerating capacity to determine their potentials for bone tissue regeneration. Fiber morphology of PCL/GEL and PCL/BCP electrospun mats considerably differs from that of the PCL membrane. Based on the contact angle analyses, the addition of GEL and PLGA was shown to reduce the hydrophobicity of these membranes.
View Article and Find Full Text PDFThe aim of this study was to investigate the expression of cardiac strain and damage in 18 male marathoners with average age of 52.8 ± 5.0 years running at a 308 km ultra-marathon.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
May 2014
A common and prevailing complication for patients with abdominal surgery is the peritoneal adhesion that follows during the post-operative recovery period. Biodegradable polymers have been suggested as a barrier to prevent the peritoneal adhesion. In this work, as a preventive method, PVA/Gelatin hydrogel-based membrane was investigated with various combinations of PVA and gelatin (50/50, 30/70/, and 10/90).
View Article and Find Full Text PDFFibroblast growth factor 21 (FGF21) plays an important role in the regulation of energy homeostasis during starvation and has an excellent therapeutic potential for the treatment of type 2 diabetes in rodents and monkeys. Acute exercise affects glucose and lipid metabolism by increasing glucose uptake and lipolysis. However, it is not known whether acute exercise affects FGF21 expression.
View Article and Find Full Text PDFOligonol, a phenolic production from lychee, has been reported to exhibit anti-oxidative and anti-inflammatory effects. This study investigated the effect of Oligonol supplementation on circulating levels of prostaglandin E2 (PGE2) and cyclooxygenase (COX)-2, as well as body temperature, after heat stress in 17 healthy human male volunteers (age, 21.6±2.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
September 2013
In order to augment bone formation, a new biodegradable scaffold system was fabricated using different ratios of hydroxyapatite (HAp) blended with synthetic polymer polycaprolactone (PCL) and natural polymer gelatin (GE) followed by electrospinning method. Three different concentrations of HAp were used in PCL/GE to obtain a blend of 10, 30, and 50% (w/v) HAp-PCL/GE. These HAp-loaded PCL/GE blends were then compared with PCL/GE blends by different mechanical and biological in vitro and in vivo studies to understand the applicability of the system.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
August 2013
A biodegradable fibrous tube was fabricated by electrospinning method using a combination of Poly(lactic-co-glycolic acid) (PLGA) and gelatin dissolved in trifluoroethanol (TFE). Different ratios of the two polymers (PLGA/Gelatin: 1/9, 3/7, 5/5) were used for electrospinning to determine the optimum condition appropriate for intestinal stent application. Fiber morphology was visualized and analyzed using a scanning electron microscope (SEM).
View Article and Find Full Text PDFWe examined serum levels of prostaglandin E2 (PGE2), cyclooxygenase (COX)-2 and orexin before and after heat acclimation (HA) to test the hypothesis that decreased basal body temperature due to HA correlate with circulating levels of these key thermoregulatory molecules. Nine healthy human male volunteers were recruited (age, 21.9±2.
View Article and Find Full Text PDFIn this work, we fabricated injectable bone substitutes modified with the addition of bioactive glass powders synthesized via ultrasonic energy-assisted hydrothermal method to the calcium phosphate-based bone cement to improve its biocompatibility. The injectable bone substitutes was initially composed of a powder component (tetracalcium phosphate, dicalcium phosphate dihydrate and calcium sulfate dehydrate) and a liquid component (citric acid, chitosan and hydroxyl-propyl-methyl-cellulose) upon which various concentrations of bioactive glass were added: 0%, 10%, 20% and 30%. Setting time and compressive strength of the injectable bone substitutes were evaluated and observed to improve with the increase of bioactive glass content.
View Article and Find Full Text PDF