The diamond-graphite hybrid thin film with low-dimensional nanostructure (e.g., nitrogen-included ultrananocrystalline diamond (N-UNCD) or the alike), has been employed in many impactful breakthrough applications.
View Article and Find Full Text PDFWe analyzed the nanodiamond-derived onion-like carbon (OLC) as function of synthesis temperature (1000~1400 °C), by high-resolution electron microscopy, electron energy loss spectroscopy, visible-Raman spectroscopy, ultraviolet photoemission spectroscopy, impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry. The temperature dependences of the obtained properties (averaged particle size, tensile strain, defect density, density of states, electron transfer kinetics, and electrochemical oxidation current) unanimously coincided: they initially increased and saturated at 1200 °C. It was attributed to the inherent tensile strains arising from (1) the volume expansion associated with the layer-wise diamond-to-graphite transformation of the core, which caused forced dilation of the outer shells during their thermal synthesis; (2) the extreme curvature of the shells.
View Article and Find Full Text PDFZnO films co-doped with fluorine and hydrogen were prepared on Corning glass by radio frequency magnetron sputtering of ZnO targets with varying amounts of ZnF2 in H2/Ar gas mixtures of varying H2 content. The ZnO films' electrical, optical, and structural properties in combination with their compositional properties were investigated. A small addition of H2 to the sputtering gas caused a drastic increase of Hall mobility with a marginal increase in carrier concentration, indicating an effective passivation of grain boundaries due to hydrogenation.
View Article and Find Full Text PDF