This study uses convolutional neural networks (CNNs) and cardiotocography data for the real-time classification of fetal status in the mobile application of a pregnant woman and the computer server of a data expert at the same time (The sensor is connected with the smartphone, which is linked with the web server for the woman and the computer server for the expert). Data came from 5249 (or 4833) cardiotocography traces in Anam Hospital for the mobile application (or the computer server). 150 data cases of 5-minute duration were extracted from each trace with 141,001 final cases for the mobile application and for the computer server alike.
View Article and Find Full Text PDFBulk-type all-solid-state lithium-ion batteries (ASLBs) have the potential to be superior to conventional lithium-ion batteries (LIBs) in terms of safety and energy density. Sulfide SE materials are key to the development of bulk-type ASLBs because of their high ionic conductivity (max of ∼10 S cm) and deformability. However, the severe reactivity of sulfide materials toward common polar solvents and the particulate nature of these electrolytes pose serious complications for the wet-slurry process used to fabricate ASLB electrodes, such as the availability of solvent and polymeric binders and the formation of ionic contacts and networks.
View Article and Find Full Text PDFAll-solid-state sodium-ion batteries that operate at room temperature are attractive candidates for use in large-scale energy storage systems. However, materials innovation in solid electrolytes is imperative to fulfill multiple requirements, including high conductivity, functional synthesis protocols for achieving intimate ionic contact with active materials, and air stability. A new, highly conductive (1.
View Article and Find Full Text PDFA new, highly conductive (4.1 × 10(-4) S cm(-1) at 30 °C), highly deformable, and dry-air-stable glass 0.4LiI-0.
View Article and Find Full Text PDFBulk-type all-solid-state lithium batteries (ASLBs) are considered a promising candidate to outperform the conventional lithium-ion batteries. Unfortunately, the current technology level of ASLBs is in a stage of infancy in terms of cell-based (not electrode-material-based) energy densities and scalable fabrication. Here, we report on the first ever bendable and thin sulfide solid electrolyte films reinforced with a mechanically compliant poly(paraphenylene terephthalamide) nonwoven (NW) scaffold, which enables the fabrication of free-standing and stackable ASLBs with high energy density and high rate capabilities.
View Article and Find Full Text PDFThe performance of nanocomposite electrodes prepared by controlled ball-milling of TiS₂ and a Li₂S-P₂S₅ solid electrolyte (SE) for all-solid-state lithium batteries is investigated, focusing on the evolution of the microstructure. Compared to the manually mixed electrodes, the ball-milled electrodes exhibit abnormally increased first-charge capacities of 416 mA h g(-1) and 837 mA h g(-1) in the voltage ranges 1.5-3.
View Article and Find Full Text PDF