The polo-box domain (PBD) of Plk1 is a promising target for cancer therapeutics. We designed and synthesized novel phosphorylated macrocyclic peptidomimetics targeting PBD based on acyclic phosphopeptide PMQSpTPL. The inhibitory activities of on Plk1-PBD is >30-fold higher than those of PMQSpTPL.
View Article and Find Full Text PDFTransforming growth factor-β activated kinase-1 (TAK1) is a potential therapeutic target for cancers and inflammatory diseases. We synthesized a series of novel imidazopyrazine derivatives, which were found to exhibit potent inhibitory effect against TAK1. Compound 22a, which possesses a good pharmacokinetic profile, showed excellent in vitro kinase activity and significant in vivo efficacy in mice xenografted with SW620, a KRAS-dependent colon cancer cell line.
View Article and Find Full Text PDFColony stimulating factor-1 receptor (CSF-1R or FMS) and it ligand, CSF-1, signaling regulates the differentiation and function of tumor-associated macrophages (TAMs) that play an important role in tumor progression. Derivatives of thieno[3,2-d]pyrimidine were synthesized and evaluated as kinase inhibitors of FMS. The most representative compound 21 showed strong activity (IC = 2 nM) against FMS kinase and served as candidate for proof of concept.
View Article and Find Full Text PDFActivating mutations involving the PI3K pathway occur frequently in human cancers. However, PI3K inhibitors primarily induce cell cycle arrest, leaving a significant reservoir of tumor cells that may acquire or exhibit resistance. We searched for genes that are required for the survival of PI3K mutant cancer cells in the presence of PI3K inhibition by conducting a genome scale shRNA-based apoptosis screen in a mutant human breast cancer cell.
View Article and Find Full Text PDF