Publications by authors named "Young Im Cho"

Drowsiness while driving is a major factor contributing to traffic accidents, resulting in reduced cognitive performance and increased risk. This article gives a complete analysis of a real-time, non-intrusive sleepiness detection system based on convolutional neural networks (CNNs). The device analyses video data recorded from an in-vehicle camera to monitor drivers' facial expressions and detect fatigue indicators such as yawning and eye states.

View Article and Find Full Text PDF

Purpose: Cervical cancer significantly impacts global health, where early detection is piv- otal for improving patient outcomes. This study aims to enhance the accuracy of cervical cancer diagnosis by addressing class imbalance through a novel hybrid deep learning model.

Methods: The proposed model, RL-CancerNet, integrates EfficientNetV2 and Vision Transformers (ViTs) within a Reinforcement Learning (RL) framework.

View Article and Find Full Text PDF

() trees play a vital role in various industries and in environmental sustainability. They are widely used for paper production, timber, and as windbreaks, in addition to their significant contributions to carbon sequestration. Given their economic and ecological importance, effective disease management is essential.

View Article and Find Full Text PDF

Genetic disorders affect over 6% of the global population and pose substantial obstacles to healthcare systems. Early identification of these rare facial genetic disorders is essential for managing related medical complexities and health issues. Many people consider the existing screening techniques inadequate, often leading to a diagnosis several years after birth.

View Article and Find Full Text PDF

Breast cancer detection at an early stage is crucial for improving patient survival rates. This work introduces an innovative thermal imaging prototype that incorporates compression techniques inspired by mammography equipment. The prototype offers a radiation-free and precise cancer diagnosis.

View Article and Find Full Text PDF
Article Synopsis
  • The paper presents a new image classification technique that utilizes knowledge distillation, focusing on a lightweight model based on a modified AlexNet architecture with depthwise-separable convolution layers.
  • The unique Teacher-Student Collaborative Knowledge Distillation (TSKD) method allows the student model to learn from both the final output and intermediate layers of the teacher model, enhancing knowledge transfer and engagement in the learning process.
  • The model is optimized for low computational resources while maintaining high accuracy in image classification tasks, featuring specialized loss functions and architectural enhancements that balance complexity and efficiency.
View Article and Find Full Text PDF

Medical imaging and deep learning models are essential to the early identification and diagnosis of brain cancers, facilitating timely intervention and improving patient outcomes. This research paper investigates the integration of YOLOv5, a state-of-the-art object detection framework, with non-local neural networks (NLNNs) to improve brain tumor detection's robustness and accuracy. This study begins by curating a comprehensive dataset comprising brain MRI scans from various sources.

View Article and Find Full Text PDF
Article Synopsis
  • Women face significant health challenges, with cervical cancer being one of the most dangerous and requiring regular screening and treatment for better outcomes.
  • The proposed "RL-CancerNet" is a new machine learning architecture designed to enhance the diagnosis of cervical cancer with high accuracy by analyzing images and understanding contextual interactions.
  • Tests conducted on public datasets (SipaKMeD and Herlev) indicate that this new method outperforms earlier approaches, demonstrating its potential effectiveness across various datasets.
View Article and Find Full Text PDF

The realm of medical imaging is a critical frontier in precision diagnostics, where the clarity of the image is paramount. Despite advancements in imaging technology, noise remains a pervasive challenge that can obscure crucial details and impede accurate diagnoses. Addressing this, we introduce a novel teacher-student network model that leverages the potency of our bespoke NoiseContextNet Block to discern and mitigate noise with unprecedented precision.

View Article and Find Full Text PDF

Forest fires rank among the costliest and deadliest natural disasters globally. Identifying the smoke generated by forest fires is pivotal in facilitating the prompt suppression of developing fires. Nevertheless, succeeding techniques for detecting forest fire smoke encounter persistent issues, including a slow identification rate, suboptimal accuracy in detection, and challenges in distinguishing smoke originating from small sources.

View Article and Find Full Text PDF

The lack of medical databases is currently the main barrier to the development of artificial intelligence-based algorithms in medicine. This issue can be partially resolved by developing a reliable high-quality synthetic database. In this study, an easy and reliable method for developing a synthetic medical database based only on statistical data is proposed.

View Article and Find Full Text PDF

Fire incidents occurring onboard ships cause significant consequences that result in substantial effects. Fires on ships can have extensive and severe wide-ranging impacts on matters such as the safety of the crew, cargo, the environment, finances, reputation, etc. Therefore, timely detection of fires is essential for quick responses and powerful mitigation.

View Article and Find Full Text PDF

Over the past several years, many children have died from suffocation due to being left inside a closed vehicle on a sunny day. Various vehicle manufacturers have proposed a variety of technologies to locate an unattended child in a vehicle, including pressure sensors, passive infrared motion sensors, temperature sensors, and microwave sensors. However, these methods have not yet reliably located forgotten children in the vehicle.

View Article and Find Full Text PDF

Understanding and identifying emotional cues in human speech is a crucial aspect of human-computer communication. The application of computer technology in dissecting and deciphering emotions, along with the extraction of relevant emotional characteristics from speech, forms a significant part of this process. The objective of this study was to architect an innovative framework for speech emotion recognition predicated on spectrograms and semantic feature transcribers, aiming to bolster performance precision by acknowledging the conspicuous inadequacies in extant methodologies and rectifying them.

View Article and Find Full Text PDF

Drowsy driving can significantly affect driving performance and overall road safety. Statistically, the main causes are decreased alertness and attention of the drivers. The combination of deep learning and computer-vision algorithm applications has been proven to be one of the most effective approaches for the detection of drowsiness.

View Article and Find Full Text PDF

Deep learning has achieved remarkably positive results and impacts on medical diagnostics in recent years. Due to its use in several proposals, deep learning has reached sufficient accuracy to implement; however, the algorithms are black boxes that are hard to understand, and model decisions are often made without reason or explanation. To reduce this gap, explainable artificial intelligence (XAI) offers a huge opportunity to receive informed decision support from deep learning models and opens the black box of the method.

View Article and Find Full Text PDF

Authorities and policymakers in Korea have recently prioritized improving fire prevention and emergency response. Governments seek to enhance community safety for residents by constructing automated fire detection and identification systems. This study examined the efficacy of YOLOv6, a system for object identification running on an NVIDIA GPU platform, to identify fire-related items.

View Article and Find Full Text PDF

During the last decade, surveillance cameras have spread quickly; their spread is predicted to increase rapidly in the following years. Therefore, browsing and analyzing these vast amounts of created surveillance videos effectively is vital in surveillance applications. Recently, a video synopsis approach was proposed to reduce the surveillance video duration by rearranging the objects to present them in a portion of time.

View Article and Find Full Text PDF

In the discipline of hand gesture and dynamic sign language recognition, deep learning approaches with high computational complexity and a wide range of parameters have been an extremely remarkable success. However, the implementation of sign language recognition applications for mobile phones with restricted storage and computing capacities is usually greatly constrained by those limited resources. In light of this situation, we suggest lightweight deep neural networks with advanced processing for real-time dynamic sign language recognition (DSLR).

View Article and Find Full Text PDF

Currently, there is a growing population around the world, and this is particularly true in developing countries, where food security is becoming a major problem. Therefore, agricultural land monitoring, land use classification and analysis, and achieving high yields through efficient land use are important research topics in precision agriculture. Deep learning-based algorithms for the classification of satellite images provide more reliable and accurate results than traditional classification algorithms.

View Article and Find Full Text PDF

Owing to the availability of a wide range of emotion recognition applications in our lives, such as for mental status calculation, the demand for high-performance emotion recognition approaches remains uncertain. Nevertheless, the wearing of facial masks has been indispensable during the COVID-19 pandemic. In this study, we propose a graph-based emotion recognition method that adopts landmarks on the upper part of the face.

View Article and Find Full Text PDF

A fire is an extraordinary event that can damage property and have a notable effect on people's lives. However, the early detection of smoke and fire has been identified as a challenge in many recent studies. Therefore, different solutions have been proposed to approach the timely detection of fire events and avoid human casualties.

View Article and Find Full Text PDF

In recent years, with the gradual development of medicine and deep learning, many technologies have been developed. In the field of beauty services or medicine, it is particularly important to judge the degree of hair damage. Because people in modern society pay more attention to their own dressing and makeup, changes in the shape of their hair have become more frequent, e.

View Article and Find Full Text PDF

Background/objectives: The aim of this study was to develop Korean food image detection and recognition model for use in mobile devices for accurate estimation of dietary intake.

Subjects/methods: We collected food images by taking pictures or by searching web images and built an image dataset for use in training a complex recognition model for Korean food. Augmentation techniques were performed in order to increase the dataset size.

View Article and Find Full Text PDF

Visibility is a complex phenomenon inspired by emissions and air pollutants or by factors, including sunlight, humidity, temperature, and time, which decrease the clarity of what is visible through the atmosphere. This paper provides a detailed overview of the state-of-the-art contributions in relation to visibility estimation under various foggy weather conditions. We propose VisNet, which is a new approach based on deep integrated convolutional neural networks for the estimation of visibility distances from camera imagery.

View Article and Find Full Text PDF