Artificial synapses with ideal functionalities are essential in hardware neural networks to allow for energy-efficient analog computing. Electrolyte-gated transistors (EGTs) are promising candidates for artificial synaptic devices due to their low voltage operations supported by large specific capacitances of electrolyte gate insulators (EGIs). We investigated the synapse transistor employing an In-Ga-Zn-O channel and a Li-doped ZrO (LZO) EGI so as to improve the short-term plasticity (STP) and long-term potentiation (LTP).
View Article and Find Full Text PDFVertical channel thin film transistors (VTFTs) have been expected to be exploited as one of the promising three-dimensional devices demanding a higher integration density owing to their structural advantages such as small device footprints. However, the VTFTs have suffered from the back-channel effects induced by the pattering process of vertical sidewalls, which critically deteriorate the device reliability. Therefore, to reduce the detrimental back-channel effects has been one of the most urgent issues for enhancing the device performance of VTFTs.
View Article and Find Full Text PDFRoles of oxygen interstitial defects located in the In-Ga-Zn-O (IGZO) thin films prepared by atomic layer deposition were investigated with controlling the cationic compositions and gate-stack process conditions. It was found from the spectroscopic ellipsometry analysis that the excess oxygens increased with increasing the In contents within the IGZO channels. While the device using the IGZO channel with an In/Ga ratio of 0.
View Article and Find Full Text PDFWhen a person plays a musical instrument, sound is produced and the integrated frequency and intensity produced are perceived aurally. The central nervous system (CNS) receives defective afferent signals from auditory systems and delivers imperfect efferent signals to the motor system due to the noise in both systems. However, it is still little known about auditory-motor interactions for successful performance.
View Article and Find Full Text PDF