Publications by authors named "Young Feng Li"

Operating the dry reforming reaction photocatalytically presents an opportunity to produce commodity chemicals from two greenhouse gases, carbon dioxide and methane, however, the top-performing photocatalysts presented in the academic literature invariably rely on the use of precious metals. In this work, we demonstrate enhanced photocatalytic dry reforming performance through surface basicity modulation of a Ni-CeO photocatalyst by selectively phosphating the surface of the CeO nanorod support. An optimum phosphate content is observed, which leads to little photoactivity loss and carbon deposition over a 50-hour reaction period.

View Article and Find Full Text PDF

Urea, an agricultural fertilizer, nourishes humanity. The century-old Bosch-Meiser process provides the world's urea. It is multi-step, consumes enormous amounts of non-renewable energy, and has a large CO footprint.

View Article and Find Full Text PDF

Surface deposition of Ba on Pd/H WO nanowires was developed by using a solution-phase atomic layer deposition process. The procedure involves the generation of Brønsted surface OH sites by H spillover on Pd/WO , which can then hydrolytically condense with Ba(OEt) to produce surface Ba . At just 0.

View Article and Find Full Text PDF

Heterogeneous thermal catalytic processes are vital for industrial production of fuels, fertilizers, and other chemicals necessary for sustaining human life. However, these processes are highly energy-intensive, requiring a vast consumption of fossil fuels. An emerging class of heterogeneous catalysts that are thermally driven but also exhibit a photochemically enhanced rate can potentially reduce process energy intensity by partially substituting conventional heat (where fossil fuels are needed) with solar energy.

View Article and Find Full Text PDF

Nanowire hydrogen bronzes of WO nanowires decorated with Pd (Pd/HWO) were previously demonstrated to effectively capture broadband radiation across the ultraviolet to near-infrared wavelength range and catalyze the reverse water gas shift reaction (RWGS). Herein, we report a synthetic strategy to enhance the performance of this class of photocatalysts by conformally coating Cu atoms onto the surface of Pd/HWO by anchoring Cu(I)OBu to the Brønsted acidic protons of the bronze. The resulting materials are characterized by a suite of analytical methods, including electron microscopy and X-ray absorption spectroscopy.

View Article and Find Full Text PDF

Two-dimensional (2D) materials are of considerable interest for catalyzing the heterogeneous conversion of CO to synthetic fuels. In this regard, 2D siloxene nanosheets, have escaped thorough exploration, despite being composed of earth-abundant elements. Herein we demonstrate the remarkable catalytic activity, selectivity, and stability of a nickel@siloxene nanocomposite; it is found that this promising catalytic performance is highly sensitive to the location of the nickel component, being on either the interior or the exterior of adjacent siloxene nanosheets.

View Article and Find Full Text PDF

The design of photocatalysts able to reduce CO to value-added chemicals and fuels could enable a closed carbon circular economy. A common theme running through the design of photocatalysts for CO reduction is the utilization of semiconductor materials with high-energy conduction bands able to generate highly reducing electrons. Far less explored in this respect are low-energy conduction band materials such as WO.

View Article and Find Full Text PDF

Metal oxides with their myriad compositions, structures and bonding exhibit an incredibly diverse range of properties. It is however the defects in metal oxides that endow them with a variety of functions and it is the ability to chemically tailor the type, population and distribution of defects on the surface and in the bulk of metal oxides that delivers utility in different applications. In this Tutorial Review, we discuss how metal oxides with designed defects can be synthesized and engineered, to enable heterogeneous catalytic hydrogenation of gaseous carbon dioxide to chemicals and fuels.

View Article and Find Full Text PDF

Herein we introduce a straightforward, low cost, scalable, and technologically relevant method to manufacture an all-carbon, electroactive, nitrogen-doped nanoporous-carbon/carbon-nanotube composite membrane, dubbed "HNCM/CNT". The membrane is demonstrated to function as a binder-free, high-performance gas diffusion electrode for the electrocatalytic reduction of CO to formate. The Faradaic efficiency (FE) for the production of formate is 81 %.

View Article and Find Full Text PDF

A rational approach is needed to design hydrogenation catalysts that make use of Earth-abundant elements to replace the rare elements such as ruthenium, rhodium, and palladium that are traditionally used. Here, we validate a prior mechanistic hypothesis that partially saturated amine(imine)diphosphine ligands (P-NH-N-P) activate iron to catalyze the asymmetric reduction of the polar bonds of ketones and imines to valuable enantiopure alcohols and amines, with isopropanol as the hydrogen donor, at turnover frequencies as high as 200 per second at 28°C. We present a direct synthetic approach to enantiopure ligands of this type that takes advantage of the iron(lI) ion as a template.

View Article and Find Full Text PDF