Publications by authors named "Young Eun Leem"

The decline in the function and mass of skeletal muscle during aging or other pathological conditions increases the incidence of aging-related secondary diseases, ultimately contributing to a decreased lifespan and quality of life. Much effort has been made to surmise the molecular mechanisms underlying muscle atrophy and develop tools for improving muscle function. Enhancing mitochondrial function is considered critical for increasing muscle function and health.

View Article and Find Full Text PDF

Arginine methylation, which is catalyzed by protein arginine methyltransferases (Prmts), is known to play a key role in various biological processes. However, the function of Prmts in osteogenic differentiation of mesenchymal stem cells (MSCs) has not been clearly understood. In the current study, we attempted to elucidate a positive role of Prmt7 in osteogenic differentiation.

View Article and Find Full Text PDF

Protein arginine methyltransferases (PRMTs) modulate diverse cellular processes, including stress responses. The present study explored the role of Prmt7 in protecting against menopause-associated cardiomyopathy. Mice with cardiac-specific Prmt7 ablation (cKO) exhibited sex-specific cardiomyopathy.

View Article and Find Full Text PDF

Osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) is a risk factor associated with vascular diseases. Wnt signaling is one of the major mechanisms implicated in the osteogenic conversion of VSMCs. Since Cdon has a negative effect on Wnt signaling in distinct cellular processes, we sought to investigate the role of Cdon in vascular calcification.

View Article and Find Full Text PDF

Doxorubicin (Dox) is a widely used anti-cancer drug that has a significant limitation, which is cardiotoxicity. Its cardiotoxic side effect is dose dependent and occurs through any age. Dox has been known to exert its toxic effect through oxidative stress, but an emerging mechanism is endoplasmic reticulum (ER) stress that activates proapoptotic pathway involving PERK/ATF4/CHOP axis.

View Article and Find Full Text PDF

Background And Objectives: The directed differentiation of pluripotent stem cells into motor neurons is critical for the development of disease modelling and therapeutics to intervene degenerative motor neuron diseases. Cell surface receptor Cdo functions as a coreceptor for Sonic hedgehog (Shh) with Boc and Gas1 in the patterning of ventral spinal cord neurons including motor neurons. However, the discrete function of Cdo is not fully understood.

View Article and Find Full Text PDF

Various stresses, including oxidative stress, impair the proliferative capacity of muscle stem cells leading to declined muscle regeneration related to aging or muscle diseases. ZNF746 (PARIS) is originally identified as a substrate of E3 ligase Parkin and its accumulation is associated with Parkinson's disease. In this study, we investigated the role of PARIS in myoblast function.

View Article and Find Full Text PDF

Obesity that is critically correlated with the initiation and development of metabolic syndrome and cardiovascular diseases has increased worldwide. Adipogenesis is coordinated through multi-steps involving adipogenic commitment, mitotic clonal expansion (MCE) and differentiation. Recently, protein arginine methyltransferase 4 (PRMT4) and PRMT5 have been implicated in modulation of adipogenesis via regulation of C/EBP-β activity or PPAR-γ2 expression.

View Article and Find Full Text PDF

Cellular senescence is implicated in aging or age-related diseases. Sonic hedgehog (Shh) signaling, an inducer of embryonic development, has recently been demonstrated to inhibit cellular senescence. However, the detailed mechanisms to activate Shh signaling to prevent senescence is not well understood.

View Article and Find Full Text PDF

Neuritogenesis is a critical event for neuronal differentiation and neuronal circuitry formation during neuronal development and regeneration. Our previous study revealed a critical role of a guidance receptor BOC in a neuronal differentiation and neurite outgrowth. However, regulatory mechanisms for BOC signaling pathway remain largely unexplored.

View Article and Find Full Text PDF

Estrogen has diverse effects on cardiovascular function, including regulation of the contractile response to vasoactive substances such as serotonin. The serotonin system recently emerged as an important player in the regulation of vascular tone in humans. However, hyperreactivity to serotonin appears to be a critical factor for the pathophysiology of hypertension.

View Article and Find Full Text PDF

Prevention of age-associated reduction in muscle mass and function is required to manage a healthy life. Supplemental (-)-Epicatechin (EC) appears to act as a potential regulator for muscle growth and strength. However, its cellular and molecular mechanisms as a potential muscle growth agent have not been studied well.

View Article and Find Full Text PDF

Neurite outgrowth is a critical step for neurogenesis and remodeling synaptic circuitry during neuronal development and regeneration. An immunoglobulin superfamily member, BOC functions as Sonic hedgehog (Shh) coreceptor in canonical and noncanonical Shh signaling in neuronal development and axon outgrowth/guidance. However signaling mechanisms responsible for BOC action during these processes remain unknown.

View Article and Find Full Text PDF

Skeletal myogenesis is coordinated by multiple signaling pathways that control cell adhesion/migration, survival and differentiation accompanied by muscle-specific gene expression. A cell surface protein Cdo is involved in cell contact-mediated promyogenic signals through activation of p38MAPK and AKT. Protein kinase C-related kinase 2 (PKN2/PRK2) is implicated in regulation of various biological processes, including cell migration, adhesion and death.

View Article and Find Full Text PDF

A potassium channel Kir2.1-associated membrane hyperpolarization is required for myogenic differentiation. However the molecular regulatory mechanisms modulating Kir2.

View Article and Find Full Text PDF

Sonic hedgehog (Shh) signaling plays an important role for early heart development, such as heart looping and cardiomyogenesis of pluripotent stem cells. A multifunctional receptor Cdo functions as a Shh coreceptor together with Boc and Gas1 to activate Shh signaling and these coreceptors seem to play compensatory roles in early heart development. Thus in this study, we examined the role of Cdo in cardiomyogenesis by utilizing an in vitro differentiation of pluripotent stem cells.

View Article and Find Full Text PDF

Myoblast differentiation is fundamental to skeletal muscle development and regeneration after injury and defects in this process are implicated in muscle atrophy associated with aging or pathological conditions. MyoD family transcription factors function as mater regulators in induction of muscle-specific genes during myoblast differentiation. We have identified bakuchiol, a prenylated phenolic monoterpene, as an inducer of MyoD-mediated transcription and myogenic differentiation.

View Article and Find Full Text PDF

Canonical Wnt signalling regulates expansion of neural progenitors and functions as a dorsalizing signal in the developing forebrain. In contrast, the multifunctional co-receptor Cdo promotes neuronal differentiation and is important for the function of the ventralizing signal, Shh. Here we show that Cdo negatively regulates Wnt signalling during neurogenesis.

View Article and Find Full Text PDF

Hedgehog (Hh) signaling plays essential roles in various developmental processes, and its aberrant regulation results in genetic disorders or malignancies in various tissues. Hyperactivation of Hh signaling is associated with lung cancer development, and there have been extensive efforts to investigate how to control Hh signaling pathway and regulate cancer cell proliferation. In this study we investigated a role of CDO, an Hh co-receptor, in non-small cell lung cancer (NSCLC).

View Article and Find Full Text PDF

Sonic hedgehog (Shh) signaling is required for numerous developmental processes including specification of ventral cell types in the central nervous system such as midbrain dopaminergic (DA) neurons. The multifunctional coreceptor Cdo increases the signaling activity of Shh which is crucial for development of forebrain and neural tube. In this study, we investigated the role of Cdo in midbrain DA neurogenesis.

View Article and Find Full Text PDF

The potential for pluripotent cells to differentiate into diverse specialized cell types has given much hope to the field of regenerative medicine. Nevertheless, the low efficiency of cell commitment has been a major bottleneck in this field. Here we provide a strategy to enhance the efficiency of early differentiation of pluripotent cells.

View Article and Find Full Text PDF

Transposable elements possess specific patterns of integration. The biological impact of these integration profiles is not well understood. Tf1, a long-terminal repeat retrotransposon in Schizosaccharomyces pombe, integrates into promoters with a preference for the promoters of stress response genes.

View Article and Find Full Text PDF

p38MAPK plays an essential role in the transition of myoblasts to differentiated myotubes through the activation of MyoD family transcription factors. A promyogenic cell surface molecule, Cdo, promotes myogenic differentiation mainly through activation of the p38MAPK pathway. Two MAP3Ks, TAK1 and ASK1, can activate p38MAPK via MKK6 in various cell systems.

View Article and Find Full Text PDF

The promyogenic cell surface molecule Cdo is required for activation of extracellular signal-regulated kinase (ERK) and nuclear factor of activated T cells c3 (NFATc3) induced by netrin-2 in myogenic differentiation. However, the molecular mechanism leading to NFATc3 activation is unknown. Stromal interaction molecule 1 (Stim1), an internal calcium sensor of the endoplasmic reticulum store, promotes myogenesis via activation of NFATc3.

View Article and Find Full Text PDF