Publications by authors named "Young Chan Choi"

In this study, we conduct simulation research on simultaneous desulfurization and denitrification in a multistaggered baffle spray scrubber. By employing two-phase flow simulations within the Euler-Lagrange framework and calculating the gas-liquid mass transfer rate with user-defined functions, we comprehensively analyzed the effects of various operational parameters. Initially, we validated our simulation model by comparing the simulation results with experimental data.

View Article and Find Full Text PDF

Due to its greater physical-chemical stability, ceramic nanofiltration (NF) membranes were used in a number of industrial applications. In this study, a novel NF membrane was prepared by co-depositing a titanium dioxide (TiO) and graphene oxide (GO) composite layer directly onto a porous α-AlO hollow fiber (HF) support. An 8 µm-thick TiO/GO layer was deposited to the surface of α-Al2O3 HF support by vacuum deposition method to produce advanced TiO/GO-AlO HF NF membrane.

View Article and Find Full Text PDF

In this paper we report on the improvement of performance by minimizing scallop size through deep reactive-ion etching (DRIE) of rotors in micro-wind turbines based on micro-electro-mechanical systems (MEMS) technology. The surface profile of an MEMS rotor can be controlled by modifying the scallop size of the DRIE surface through changing the process recipe. The fabrication of a planar disk-type MEMS rotor through the MEMS fabrication process was carried out, and for the comparison of the improvements in the performance of each rotor, RPM testing and open circuit output voltage experiments of stators and permanent magnets were performed.

View Article and Find Full Text PDF

Background: Extracellular vesicles (EVs) derived from plants have emerged as potential candidates for cosmetic and therapeutic applications. In this study, we isolated EVs from Aloe vera peels (A-EVs) and investigated the antioxidant and wound healing potential of A-EVs.

Methods: A-EVs were isolated by ultracentrifugation and tangential flow filtration and were characterized using transmission electron microscopy, nanoparticle tracking analysis.

View Article and Find Full Text PDF

Allogeneic transplantation of mesenchymal stem cell-derived extracellular vesicles (EVs) offers great potential for treating liver fibrosis. However, owing to their intrinsic surface characteristics, bare EVs are non-specifically distributed in the liver tissue after systemic administration, leading to limited therapeutic efficacy. To target activated hepatic stellate cells (HSCs), which are responsible for hepatic fibrogenesis, vitamin A-coupled small EVs (V-EVs) were prepared by incorporating vitamin A derivative into the membrane of bare EVs.

View Article and Find Full Text PDF

Poly(L-lactic acid) (PLLA) based piezoelectric polymers are gradually becoming the substitute for the conventional piezoelectric ceramic and polymeric materials due to their low cost and biodegradable, non-toxic, piezoelectric and non-pyroelectric nature. To improve the piezoelectric properties of melt-spun poly(L-lactic acid) (PLLA)/BaTiO, we optimized the post-processing conditions to increase the proportion of the β crystalline phase. The α → β phase transition behaviour was determined by two-dimensional wide-angle x-ray diffraction and differential scanning calorimetry.

View Article and Find Full Text PDF

Hydrogen production from renewable resources, such as lignocellulosic biomass, is highly desired, under the most sustainable and mildest reaction conditions. In this study, a new sustainable three-step process for the production of hydrogen has been proposed. In the first step, a crude formic acid (CF) solution, which included typical reaction byproducts, in particular, acetic acid, levulinic acid, saccharides, 5-hydroxymethylfurfural, furfural, and lignin, was obtained through the combined hydrolysis/oxidation of the biomass, in the presence of diluted sulfuric acid/hydrogen peroxide, as homogeneous catalysts.

View Article and Find Full Text PDF

Background: Botulinum toxin (BoNT) is widely used to treat masseter muscle hypertrophy. Changes in the muscle thickness have been found in many studies, but there has been no report on changes in the thickness from the skin surface to the masseter muscle.

Objectives: We aimed to use ultrasonography to measure not only changes in the muscle thickness but also changes in subcutaneous thickness.

View Article and Find Full Text PDF

Self-assembled nanoparticles based on PEGylated human α-elastin were prepared as a potential vehicle for sustained protein delivery. The α-elastin was extracted from human adipose tissue and modified with methoxypolyethyleneglycol (mPEG) to control particle size and enhance the colloidal stability. The PEGylated human α-elastin showed sol-to-particle transition with a lower critical solution temperature (LCST) of 25°C-40°C in aqueous media.

View Article and Find Full Text PDF

Exosomes released from skeletal muscle cells play important roles in myogenesis and muscle development via the transfer of specific signal molecules. In this study, we investigated whether exosomes secreted during myotube differentiation from human skeletal myoblasts (HSkM) could induce a cellular response from human adipose-derived stem cells (HASCs) and enhance muscle regeneration in a muscle laceration mouse model. The exosomes contained various signal molecules including myogenic growth factors related to muscle development, such as insulin-like growth factors (IGFs), hepatocyte growth factor (HGF), fibroblast growth factor-2 (FGF2), and platelet-derived growth factor-AA (PDGF-AA).

View Article and Find Full Text PDF

Extracellular matrix (ECM) provides structural support and biochemical cues for tissue development and regeneration. Here we report a thermosensitive hydrogel composed of soluble ECM (sECM) and methylcellulose (MC) for injectable stem cell delivery. The sECM was prepared by denaturing solid ECM extracted from human adipose tissue and then blended with a MC solution.

View Article and Find Full Text PDF

We designed bilayer composites composed of an upper layer of titanium dioxide (TiO2)-incorporated chitosan membrane and a sub-layer of human adipose-derived extracellular matrix (ECM) sheet as a wound dressing for full-thickness wound healing. The dense and fibrous top layer, which aims to protect the wound from bacterial infection, was prepared by electrospinning of chitosan solution followed by immersion in TiO2 solution. The sponge-like sub-layer, which aims to promote new tissue regeneration, was prepared with acellular ECM derived from human adipose tissue.

View Article and Find Full Text PDF

Since stem cells have the capacity to differentiate into a variety of cell types, stem cell delivery systems (SCDSs) can be effective therapeutic strategies for a multitude of diseases and disorders. For stem cell-based therapy, stem cells are introduced directly (or peripherally) into a target tissue via different delivery systems. Despite initial promising results obtained from preclinical studies, a number of technical hurdles must be overcome for ultimate clinical utility of stem cells.

View Article and Find Full Text PDF

Gelatin is extensively used as a biomaterial for diverse pharmaceutical and medical applications due to its excellent biocompatibility and biodegradability. Here we present bio-inspired tissue-adhesive gelatin hydrogels prepared by the enzyme-mediated synthesis of l-3,4-dihydroxyphenylalanine (l-DOPA) and Fe ion crosslinking. Gelatin of human origin was obtained through two major steps, extracellular matrix (ECM) extraction from human adipose tissue and gelatin isolation from the ECM.

View Article and Find Full Text PDF

Mesoporous silica and titania supraparticles with controllable pore size, particle size, and macroscopic morphology were readily synthesized by a novel synthetic pathway using meniscus templating on a superhydrophobic surface, which is much simpler than well-known emulsion systems. Moreover, we first report that despite the very large radius of droplet curvature on a millimeter scale, supraparticles kept the round cap morphology due to addition of sucrose as a shape preserver as well as a pore-forming agent. In addition, mesoporous silica and titania supraparticles provided good adsorption performance for Acid Blue 25 and Cr(VI), and were easily separated from the solution by using a scoop net after adsorption tests.

View Article and Find Full Text PDF

Coal-fired power plants are facing to two major independent problems, namely, the burden to reduce CO(2) emission to comply with renewable portfolio standard (RPS) and cap-and-trade system, and the need to use low-rank coal due to the instability of high-rank coal supply. To address such unresolved issues, integrated gasification combined cycle (IGCC) with carbon capture and storage (CCS) has been suggested, and low rank coal has been upgraded by high-pressure and high-temperature processes. However, IGCC incurs huge construction costs, and the coal upgrading processes require fossil-fuel-derived additives and harsh operation condition.

View Article and Find Full Text PDF

Cells in tissues are surrounded by the extracellular matrix (ECM), a gel-like material of proteins and polysaccharides that are synthesized and secreted by cells. Here we propose that the ECM can be isolated from porcine adipose tissue and holds great promise as a xenogeneic biomaterial for tissue engineering and regenerative medicine. Porcine adipose tissue is easily obtained in large quantities from commonly discarded food waste.

View Article and Find Full Text PDF

Collagen, the most abundant protein in vertebrates, is a useful biomaterial in pharmaceutical and medical industries. So far, most collagen has been extracted from animals and cadavers. Herein, we suggest human adipose tissue, which is routinely abandoned after liposuction, as a plentiful source of human collagen.

View Article and Find Full Text PDF

Decellularized human extracellular matrices (ECMs) are an extremely appealing biomaterial for tissue engineering and regenerative medicine. In this study, we decellularized human adipose tissue, fabricated a thin ECM sheet and explored the potential of this human adipose-derived ECM sheet as a substrate to support the formation of tissues other than adipose tissue. Acellular ECM sheets were fabricated from human adipose tissue through successive physical and chemical treatments: homogenization, centrifugation, casting, freeze-drying and sodium dodecyl sulfate treatment.

View Article and Find Full Text PDF

Carrier geometry is a key parameter of drug delivery systems and has significant impact on the drug release rate and interaction with cells and tissues. Here we present a piezoelectric inkjet printing system as a simple and convenient approach for fabrication of drug-loaded polymer microparticles with well-defined and controlled shapes. The physical properties of paclitaxel (PTX)-loaded poly(lactic-co-glycolic acid) (PLGA) inks, such as volatility, viscosity and surface tension, were optimized for piezoelectric inkjet printing, and PTX-loaded PLGA microparticles were fabricated with various geometries, such as circles, grids, honeycombs, and rings.

View Article and Find Full Text PDF

Extracellular matrix (ECM) secreted from the resident cell of tissue is an ideal biomaterial evolved by nature. Cartilage is also built from well-organized ECM components in a gel-like structure with a high collagen and proteoglycan content. Here, we explored cartilage tissue engineering using ECM scaffolds seeded with stem cells.

View Article and Find Full Text PDF

Stem cell therapy requires large numbers of stem cells to replace damaged tissues, but only limited numbers of stem cells can be harvested from a single patient. To obtain large quantities of stem cells with differentiation potential, we explored a spinner culture system using human extracellular matrix (hECM) powders. The hECM was extracted from adipose tissue and fabricated into powders.

View Article and Find Full Text PDF

Decellularized tissues composed of extracellular matrix (ECM) have been clinically used to support the regeneration of various human tissues and organs. Most decellularized tissues so far have been derived from animals or cadavers. Therefore, despite the many advantages of decellularized tissue, there are concerns about the potential for immunogenicity and the possible presence of infectious agents.

View Article and Find Full Text PDF

Objective: To use three-dimensional (3D) laser scanning to elucidate changes in the external facial contour before and after botulinum toxin type A (BoNT-A) injections.

Methods & Materials: BoNT-A was injected into 15 volunteers as a treatment for lower facial contouring. A total of 25 U of BoNT-A was injected into each side of the masseter muscle bilaterally.

View Article and Find Full Text PDF

In the present study, gasification of biodiesel by-product, crude glycerin, was performed in an entrained flow gasifier. Gasification was conducted in a temperature range of 950-1500 degrees C and excess air ratio of 0.17-0.

View Article and Find Full Text PDF