Publications by authors named "Youness Arjoune"

Article Synopsis
  • Heart sound segmentation enhances AI auscultation decision support systems, addressing the decline in physical exam skills and reducing subjectivity in heart sound interpretation.
  • A new noise-robust segmentation algorithm was tested on two datasets, showing high accuracy in identifying heart sound boundaries and significantly faster performance than previous models.
  • The algorithm's effectiveness (87.4% success rate on the CNH dataset) improves the reliability of heart sound analysis, supporting advancements in cardiovascular AI research and clinical applications.
View Article and Find Full Text PDF

(1) Background: Mastery of auscultation can be challenging for many healthcare providers. Artificial intelligence (AI)-powered digital support is emerging as an aid to assist with the interpretation of auscultated sounds. A few AI-augmented digital stethoscopes exist but none are dedicated to pediatrics.

View Article and Find Full Text PDF

Digital stethoscopes can enable the development of integrated artificial intelligence (AI) systems that can remove the subjectivity of manual auscultation, improve diagnostic accuracy, and compensate for diminishing auscultatory skills. Developing scalable AI systems can be challenging, especially when acquisition devices differ and thus introduce sensor bias. To address this issue, a precise knowledge of these differences, i.

View Article and Find Full Text PDF

Background: Still's murmur is the most prevalent innocent heart murmur of childhood. Auscultation is the primary clinical tool to identify this murmur as innocent. Whereas pediatric cardiologists routinely perform this task, primary care providers are less successful in distinguishing Still's murmur from the murmurs of true heart disease.

View Article and Find Full Text PDF

Epileptic focal seizures can be localized in the brain using tracer injections during or immediately after the incidence of a seizure. A real-time automated seizure detection system with minimal latency can help time the injection properly to find the seizure origin accurately. Reliable real-time seizure detection systems have not been clinically reported yet.

View Article and Find Full Text PDF

Heat loss quantification (HLQ) is an essential step in improving a building's thermal performance and optimizing its energy usage. While this problem is well-studied in the literature, most of the existing studies are either qualitative or minimally driven quantitative studies that rely on localized building envelope points and are, thus, not suitable for automated solutions in energy audit applications. This research work is an attempt to fill this gap of knowledge by utilizing intensive thermal data (on the order of 100,000 plus images) and constitutes a relatively new area of analysis in energy audit applications.

View Article and Find Full Text PDF

Cognitive radio technology has the potential to address the shortage of available radio spectrum by enabling dynamic spectrum access. Since its introduction, researchers have been working on enabling this innovative technology in managing the radio spectrum. As a result, this research field has been progressing at a rapid pace and significant advances have been made.

View Article and Find Full Text PDF

Sensing the wideband spectrum is an important process for next-generation wireless communication systems. Spectrum sensing primarily aims at detecting unused spectrum holes over wide frequency bands so that secondary users can use them to meet their requirements in terms of quality-of-service. However, this sensing process requires a great deal of time, which is not acceptable for timely communications.

View Article and Find Full Text PDF