The growth of 3D extended periodic networks made up of π-conjugated molecules on semi-conductor surfaces is of interest for the integration of nano-components in the future generations of smart devices. In the work presented in this article, we successfully achieved the formation of bilayered networks on a silicon surface including 1D-isolated nanolines in the second layer. Firstly, we observed the formation of a 2D large-scale supramolecular network in the plane of a silicon surface through the deposition of tailored molecules.
View Article and Find Full Text PDFHigh-density packing in organic crystals is usually associated with an increase of the coordination between molecules. Such a concept is not necessarily extended to two-dimensional molecular networks self-assembled on a solid surface, for which we demonstrate the key role of the surface in inducing the optimal packing. By a combination of scanning tunneling microscopy experiments and multiscale computer simulations, we study the phase transition between two polymorphs.
View Article and Find Full Text PDFWe report a significant and persistent enhancement of the conductivity in free-standing non-intentionally doped InAs nanowires upon irradiation in ultra-high vacuum. Combining four-point probe transport measurements performed on nanowires with different surface chemistries, field effect based measurements and numerical simulations of the electron density, the change in the conductivity is found to be caused by an increase in the surface free carrier concentration. Although an electron beam of a few keV, typically used for the inspection and the processing of materials, propagates through the entire nanowire cross-section, we demonstrate that the electrical properties of the nanowire are predominantly affected by radiation-induced defects occurring at the nanowire surface and not in the bulk.
View Article and Find Full Text PDFIII-V antimonide nanowires are among the most interesting semiconductors for transport physics, nanoelectronics and long-wavelength optoelectronic devices due to their optimal material properties. In order to investigate their complex crystal structure evolution, faceting and composition, we report a combined scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning tunneling microscopy (STM) study of gold-nucleated ternary InAs/InAs(1-x)Sb(x) nanowire heterostructures grown by molecular beam epitaxy. SEM showed the general morphology and faceting, TEM revealed the internal crystal structure and ternary compositions, while STM was successfully applied to characterize the oxide-free nanowire sidewalls, in terms of nanofaceting morphology, atomic structure and surface composition.
View Article and Find Full Text PDFThe assembly and dynamics of a hierarchical, bimolecular network of sexiphenyl dicarbonitrile and N,N'-diphenyl oxalic amide molecules on the Ag(111) surface are studied by scanning tunneling microscopy at controlled temperature. The network formation is governed by a two-step protocol involving hierarchic interactions, including a novel carbonitrile-oxalic amide bonding motif. For temperatures exceeding ~70 K, more weakly bound sexiphenyl dicarbonitrile molecules carry out one-dimensional diffusion guided by the more stable substructure of the network held together by the carbonitrile-oxalic amide bonding motif.
View Article and Find Full Text PDFThe formation of a large scale pattern on Si(111)-7 × 7 reconstruction is still a challenge. We report herein a new solution to achieve this type of nanostructuration by using of zwitterionic molecules. The formation of a large-scale pattern is successfully obtained due to the perfect match between the molecular geometry and the surface topology and to electrostatic interactions between molecules and surface.
View Article and Find Full Text PDFThis work describes an innovative concept for the development of organized molecular systems based on the template effect of the pre-structured semi-conductive SmSi(111) interface. This substrate is selected because Sm deposition in the submonolayer range leads to a 8x2-reconstruction, which is a well-defined one-dimensional semi-metallic structure. Adsorption of aromatic molecules [1,4-di-(9-ethynyltriptycenyl)-benzene] on SmSi(111)- 8x2 and Si(111)-7x7 interfaces is investigated by scanning tunneling microscopy (STM) at room temperature.
View Article and Find Full Text PDFThe engineering of a complete adlayer of organic nanolines by supramolecular self-assembly has been achieved for the first time on a silicon-based surface at room temperature and has been studied by scanning tunneling microscopy. This complete adlayer has been successfully obtained thanks to the combination of a specific Si(111)-B square root 3x square root 3R30 degrees semiconductive surface and of strong hydrogen bonds between a pair of dipolar molecules.
View Article and Find Full Text PDF