Reverse genetics (RG) systems are extensively utilized to investigate the characteristics of influenza viruses and develop vaccines, predominantly relying on human RNA polymerase I (pol I). However, the efficiency of RG systems for avian-origin influenza viruses may be compromised due to potential species-specific interactions of RNA pol I. In this study, we reported the polymerase activities of the duck RNA pol I promoter in avian cells and the generation of recombinant avian-derived influenza viruses using a novel vector system containing the duck RNA pol I promoter region to enhance the rescue efficiency of the RG system in avian cells.
View Article and Find Full Text PDFVet Immunol Immunopathol
December 2024
The avian influenza A virus (H7N9), first detected in China in 2013, is a zoonotic virus that remains persistent in bird populations despite a decline in human cases owing to control measures. Therefore, this study aimed to develop a vaccine as one preventive strategy in anticipation of the potential entry of H7N9 into Korea. Using the hemagglutinin and neuraminidase consensus sequences of H7N9 from 2018-2019, a recombinant H7N9 vaccine, rgAPQAH7N9, was developed, and its protective efficacy in specific pathogen-free chickens was evaluated.
View Article and Find Full Text PDFThe prevalence of highly pathogenic avian influenza (HPAI) A(H5N1) viruses has increased in wild birds and poultry worldwide, and concomitant outbreaks in mammals have occurred. During 2023, outbreaks of HPAI H5N1 virus infections were reported in cats in South Korea. The H5N1 clade 2.
View Article and Find Full Text PDFHighly pathogenic avian influenza H5N6 and H5N1 viruses of clade 2.3.4.
View Article and Find Full Text PDFH5, H7 and H9 are the major subtypes of avian influenza virus (AIV) that cause economic losses in the poultry industry and sporadic zoonotic infection. Early detection of AIV is essential for preventing disease spread. Therefore, molecular diagnosis and subtyping of AIV via real-time RT-PCR (rRT-PCR) is preferred over other classical diagnostic methods, such as egg inoculation, RT-PCR and HI test, due to its high sensitivity, specificity and convenience.
View Article and Find Full Text PDFThe introduction of novel highly pathogenic (HPAI) viruses into Korea has been attributed to recombination events occurring at breeding sites in the Northern Hemisphere. This has increased interest in monitoring and genetically analyzing avian influenza viruses (AIVs) in northern regions, such as Mongolia, which share migratory bird flyways with Korea. AIVs in Mongolia were monitored by analyzing 10,149 fecal samples freshly collected from wild birds from April to October in 2021 to 2023.
View Article and Find Full Text PDFSince 2014, periodic outbreaks of high pathogenicity avian influenza (HPAI) caused by clade 2.3.4.
View Article and Find Full Text PDFSince the 2000s, the Y439 lineage of H9N2 avian influenza virus (AIV) has been the predominant strain circulating in poultry in Korea; however, in 2020, the Y280 lineage emerged and spread rapidly nationwide, causing large economic losses. To prevent further spread and circulation of such viruses, rapid detection and diagnosis through active surveillance programs are crucial. Here, we developed a novel H9 rRT-PCR assay that can detect a broad range of H9Nx viruses in situations in which multiple lineages of H9 AIVs are co-circulating.
View Article and Find Full Text PDFWild bird avian influenza type A virus (AIV) surveillance is important for the early detection of highly pathogenic AIVs and for providing early warnings to the poultry industry and veterinary services to implement more effective control measures against these viruses. Some field samples are often found to contain more than two kinds of AIV. Correct determination of the HA/NA subtype and complete nucleotide sequences of the component viruses in those samples are often critical for timely and accurate understanding of the field situation, but it is not easy to define the genomic structure of the constituent viruses unambiguously because AIV has eight segmented genomes.
View Article and Find Full Text PDFHigh pathogenicity avian influenza (HPAI) viruses of clade 2.3.4.
View Article and Find Full Text PDFViruses
March 2023
For the early detection of avian influenza virus (AIV), molecular diagnostic methods such as real-time RT-PCR (rRT-PCR) are the first choice in terms of accuracy and speed in many countries. A laboratory's capability to perform this diagnostic method needs to be measured through external and independent assessment to ensure that the method is validated within the laboratory and in interlaboratory comparison. The Animal and Plant Quarantine Agency of Korea has implemented five rounds of proficiency testing (PT) for rRT-PCR targeting local veterinary service laboratories involved in the AIV national surveillance program from 2020 to 2022.
View Article and Find Full Text PDFWorldwide, high pathogenic avian influenza viruses belonging to clades 2.3.4.
View Article and Find Full Text PDFPrior to the identification of low pathogenic avian influenza H9N2 viruses belonging to the Y280 lineage in 2020, Y439 lineage viruses had been circulating in the Republic of Korea since 1996. Here, we developed a whole inactivated vaccine (vac564) by multiple passage of Y439 lineage viruses and then evaluated immunogenicity and protective efficacy in specific-pathogen-free chickens. We found that LBM564 could be produced at high yield in eggs (10EID/0.
View Article and Find Full Text PDFThe H9N2 avian influenza (AI) has become endemic in poultry in many countries since the 1990s, which has caused considerable economic losses in the poultry industry. Considering the long history of the low pathogenicity H9N2 AI in many countries, once H9N2 AI is introduced, it is more difficult to eradicate than high pathogenicity AI. Various preventive measures and strategies, including vaccination and active national surveillance, have been used to control the Y439 lineage of H9N2 AI in South Korea, but it took a long time for the H9N2 virus to disappear from the fields.
View Article and Find Full Text PDFSince 2018, Korea has been building an avian influenza (AI) national antigen bank for emergency preparedness; this antigen bank is updated every 2 years. To update the vaccine strains in the antigen bank, we used reverse genetics technology to develop two vaccine candidates against avian influenza strains belonging to clades 2.3.
View Article and Find Full Text PDFHigh pathogenicity H5N1 avian influenza viruses pose a threat to both animal and human health worldwide. In late 2020, outbreaks of H5 high pathogenicity avian influenza viruses belonging to clade 2.3.
View Article and Find Full Text PDFFor the development of an optimized Egyptian H9N2 vaccine candidate virus for poultry, various recombinant Egyptian H9N2 viruses generated by a PR8-based reverse genetics system were compared in terms of their productivity and biosafety since Egyptian H9N2 avian influenza viruses already possess mammalian pathogenicity-related mutations in the hemagglutinin (HA), neuraminidase (NA), and PB2 genes. The Egyptian HA and NA genes were more compatible with PR8 than with H9N2 AIV (01310) internal genes, and the 01310-derived recombinant H9N2 strains acquired the L226Q reverse mutation in HA after passages in eggs. Additionally, the introduction of a strong promoter at the 3'-ends of PB2 and PB1 genes induced an additional mutation of P221S.
View Article and Find Full Text PDFThe past two decades have seen the emergence of highly pathogenic avian influenza (HPAI) infections that are characterized as extremely contagious, with a high fatality rate in chickens, and humans; this has sparked considerable concerns for global health. Generally, the new variant of the HPAI virus crossed into various countries through wild bird migration, and persisted in the local environment through the interactions between wild and farmed birds. Nevertheless, no studies have found informative cases associated with connecting local persistence and long-range dispersal.
View Article and Find Full Text PDFHuman infection by avian-origin subtype H10 influenza viruses has raised concerns about the pandemic potential of these microbes. H10 subtype low pathogenic avian influenza viruses (LPAIVs) have been isolated from wild birds and poultry worldwide. Here, we isolated 36 H10 LPAIVs from wild bird habitats (a mean annual rate of 3.
View Article and Find Full Text PDFZoonotic infection with avian influenza viruses (AIVs) of subtype H7, such as H7N9 and H7N4, has raised concerns worldwide. During the winter of 2020-2021, five novel H7 low pathogenic AIVs (LPAIVs) containing different neuraminidase (NA) subtypes, including two H7N3, an H7N8, and two H7N9, were detected in wild bird feces in South Korea. Complete genome sequencing and phylogenetic analysis showed that the novel H7Nx AIVs were reassortants containing two gene segments (hemagglutinin (HA) and matrix) that were related to the zoonotic Jiangsu-Cambodian H7 viruses causing zoonotic infection and six gene segments originating from LPAIVs circulating in migratory birds in Eurasia.
View Article and Find Full Text PDF