Publications by authors named "Youn-Ja Kwon"

Combination chemotherapy for the treatment of pancreatic cancer commonly employs gemcitabine with an EGFR inhibitor such as erlotinib. Here, we show that the retinoic acid derivative, ABPN, exhibits more potent anticancer effects than erlotinib, while exhibiting less toxicity toward noncancerous human control cells. Low micromolar concentrations of ABPN induced apoptosis in BxPC3 and HPAC pancreatic cancer cell lines, concomitant with a reduction in phosphorylated EGFR as well as decreased ErbB3, Met and BRUCE protein levels.

View Article and Find Full Text PDF

Retinoic acid and its amide derivative, N-(4-hydroxyphenyl)retinamide (4-HPR), have been proposed as chemopreventative and chemotherapeutic agents. However, their low cytotoxic activity and water solubility limit their clinical use. In this study, we synthesized novel retinoid derivatives with improved cytotoxicity against cancer cells and increased hygroscopicity.

View Article and Find Full Text PDF

Retinoic acid (RA) and sodium butyrate (NaB) have been implicated in the regulation of growth and differentiation in various cancer cells. To produce an agent with the properties of both RA and NaB, a butyryl aminophenyl ester of RA (4-BPRE) was synthesized. The agent was compared with an aminophenyl ester devoid of the butyryl group (4-APRE) for antitumor potential in vitro.

View Article and Find Full Text PDF

Fenretinide, 4-(N-hydroxyphenyl) retinamide (4-HPR), has demonstrated anticancer activity associated with a favorable toxicity profile and is now being investigated in several clinical trials. However, its plasma levels in patients have been far lower than the effective concentration required to induce apoptosis (usually 10 microM). This result has led to the synthesis of derivatives with better efficacy.

View Article and Find Full Text PDF

To synthesize glycyrrhetinic acid (GA) derivatives (3, 4, 5, 10, 13, 14, 15, and 16), we first removed the ketonic group in the C-11 position, and the carboxylic function at the C-30 position was kept intact, reduced to an alcohol, or transformed to an aldehyde corresponding derivatives 10 and 13. Glycyrrhetinic acid (GA) derivatives (3, 4, 5, 15, and 16) were coupled with 4-amino piperpyridine derivatives (12 and 14) and 4-fluorobenzyl bromide at C-30 carboxylic acid position of glycyrrhetinic acid. In subsequent tyrosinase assays, we found that GA derivatives 4, 5, and 16 were not active at early time points, but strongly inhibited tyrosinase activity at late time points.

View Article and Find Full Text PDF

Retinoids are natural and synthetic derivatives of vitamin A that have great promise for cancer therapy and chemoprevention. Of the retinoids developed so far, 4-(N-hydroxyphenyl)retinamide (4-HPR or fenretinide) appears to have the best therapeutic potential in vitro and in vivo and is currently being tested in clinical trials for cancer prevention and therapy. To develop other potentially potent antitumor agents, we synthesized 85 retinoid derivatives.

View Article and Find Full Text PDF

4-(N-Hydroxyphenyl)retinamide (also known as 4-HPR or fenretinide), a synthetic amide of all-trans retinoic acid (RA), has been implicated as a promising anticancer agent associated with reducing the toxicity related to RA. However, the low plasma levels of 4-HPR in patients limited clinical trials, leading to a search for derivatives with better efficacy. In this study, we synthesized a series of 4-HPR derivatives in good yields by introducing acetate (compound 1).

View Article and Find Full Text PDF

Retinol (vitamin A) is used as an antiwrinkle agent in the cosmetics industry. However, its photo-instability makes it unsuitable for use in general cosmetic formulations. To improve the photo-stability of retinol, three derivatives (3, 4, and 5) were synthesized and their biological activities were analyzed.

View Article and Find Full Text PDF