Introduction: Brain computer interface-based action observation (BCI-AO) is a promising technique in detecting the user's cortical state of visual attention and providing feedback to assist rehabilitation. Peripheral nerve electrical stimulation (PES) is a conventional method used to enhance outcomes in upper extremity function by increasing activation in the motor cortex. In this study, we examined the effects of different pairings of peripheral nerve electrical stimulation (PES) during BCI-AO tasks and their impact on corticospinal plasticity.
View Article and Find Full Text PDFCurrent clinical therapeutic efficacy for the treatment of osteo- and rheumatoid-arthritis is obviously limited. Although mesenchymal stem cells (MSCs) are considered as a source of promising regenerative therapy, un-modified or genetically engineered MSCs injected in vivo restrict their clinical utility because of the low drug efficacy and unpredicted side effect, respectively. Herein, a strategy to enhance the migration efficacy of MSCs to inflamed joints via an inflammation-mediated education process is demonstrated.
View Article and Find Full Text PDFPurpose: Rheumatoid arthritis (RA) is a highly prevalent form of autoimmune disease that affects nearly 1% of the global population by causing severe cartilage damage and inflammation. Despite its prevalence, previous efforts to prevent the perpetuation of RA have been hampered by therapeutics' cytotoxicity and poor delivery to target cells. The present study exploited drug repositioning and nanotechnology to convert metformin, a widely used antidiabetic agent, into an anti-rheumatoid arthritis drug by designing poly(lactic-co-glycolic acid) (PLGA)-based spheres.
View Article and Find Full Text PDFBrain-computer interface (BCI) is a promising technique that enables patients' interaction with computers or machines by analyzing specific brain signal patterns and provides patients with brain state-dependent feedback to assist in their rehabilitation. Action observation (AO) and peripheral electrical stimulation (PES) are conventional methods used to enhance rehabilitation outcomes by promoting neural plasticity. In this study, we assessed the effects of attentional state-dependent feedback in the combined application of BCI-AO with PES on sensorimotor cortical activation in patients after stroke.
View Article and Find Full Text PDFAction observation (AO) combined with brain-computer interface (BCI) technology enhances cortical activation. Peripheral electrical stimulation (PES) increases corticospinal excitability, thereby activating brain plasticity. To maximize motor recovery, we assessed the effects of BCI-AO combined with PES on corticospinal plasticity.
View Article and Find Full Text PDFInt J Environ Res Public Health
June 2021
Diabetic peripheral neuropathy (DPN) is a common complication of type 2 diabetes mellitus (DM). DPN causes a decrease in proprioception, which could reduce balance ability. We investigated the association of impaired vibration sense, based on vibration perception threshold (VPT), with assessments of balance and other factors affecting balance impairment and fear of falling in patients with type 2 DM.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2020
Understanding the crosstalk between synoviocytes and macrophages is very important for the development of strategies to regulate inflammatory responses in an inflamed synovium. Simultaneous regulation of the pro- and anti-inflammatory responses of synoviocytes and macrophages (repolarization) is critical for the treatment of arthritis. Thus, the immune regulatory functions of an ideal nanodrug should not only decrease the pro-inflammatory response but also effectively increase the anti-inflammatory response.
View Article and Find Full Text PDFWe attempted to evaluate the clinical efficiency of a novel three-dimensional interactive augmented reality system (3D-ARS) for balance and mobility rehabilitation. This system enables participant training with a realistic 3D interactive balance exercise and assessing movement parameters and joint angles by using a kinetic sensor system. We performed a randomized controlled trial in a general hospital.
View Article and Find Full Text PDFCyberpsychol Behav Soc Netw
August 2018
This study aimed to investigate the effectiveness of the mobile game-based neuromuscular electrical stimulation (MG-NMES) with assessing usability issues, such as attention and curiosity, and intrinsically interesting issues, which is necessary for successful poststroke rehabilitation. With the conventional NMES (C-NMES) system, the subjects underwent active repetitive cyclic NMES training. For assessment of usability issues, 20 hemiplegic stroke subjects were randomly divided into two groups.
View Article and Find Full Text PDFDexamethasone (DEX), a non-particulate glucocorticoid (GC) to inhibit anti-inflammatory response, has been widely used for the treatment of various diseases such as arthritis, cancer, asthma, chronic obstructive pulmonary disease, cerebral edema, and multiple sclerosis. However, prolonged and/or high-dose GC therapy can cause various serious adverse effects (adrenal insufficiency, hyperglycemia, Cushing's syndrome, osteoporosis, Charcot arthropathy, etc). In this study, developed DEX-carbon nanotube (CNT) conjugates improved intracellular drug delivery via increased caveolin-dependent endocytosis and ultimately suppressed the expression of major pro-inflammatory cytokines in tumor necrosis factor-α (TNF-α)-stimulated human fibroblast-like synoviocytes (FLS) at low drug concentrations.
View Article and Find Full Text PDFHeterotopic ossification (HO) is frequently seen on rehabilitation units after spinal cord injuries, fractures, brain injuries, and limb amputations. Currently, there is no effective treatment for HO other than prophylaxis with anti-inflammatory medications, irradiation, and bisphosphonate administration. These prophylactic treatments are not effective for managing ectopic bone once it has formed.
View Article and Find Full Text PDFObjective: To investigate the effects of using motor imagery (MI) in combination with a virtual reality (VR) program on healthy volunteers and stroke patients. In addition, this study investigated whether task variability within the VR-guided MI programs would influence corticomotor excitability.
Methods: The present study included 15 stroke patients and 15 healthy right-handed volunteers who were presented with four different conditions in a random order: rest, MI alone, VR-guided MI, and VR-guided MI with task variability.
Repetitive intra-articular corticosteroid injections are inevitable for treating synovial inflammation in advanced arthritis. However, short- and long-term use of corticosteroids usually triggers serious side effects (i.e.
View Article and Find Full Text PDFObjective: To improve lower extremity function and balance in elderly persons, we developed a novel, three-dimensional interactive augmented reality system (3D ARS). In this feasibility study, we assessed clinical and kinematic improvements, user participation, and the side effects of our system.
Methods: Eighteen participants (age, 56-76 years) capable of walking independently and standing on one leg were recruited.
Background: There is growing evidence that the combination of non-invasive brain stimulation and motor skill training is an effective new treatment option in neurorehabilitation. We investigated the beneficial effects of the application of transcranial direct current stimulation (tDCS) combined with virtual reality (VR) motor training.
Methods: In total, 15 healthy, right-handed volunteers and 15 patients with stroke in the subacute stage participated.
Objective: To investigate the analgesic effect of transcranial direct current stimulation (tDCS) over the primary motor (M1), dorsolateral prefrontal cortex (DLPFC), and sham tDCS in patients with painful diabetic polyneuropathy (PDPN).
Methods: Patients with PDPN (n=60) were divided randomly into the three groups (n=20 per group). Each group received anodal tDCS with the anode centered over the left M1, DLPFC, or sham stimulation for 20 minutes at intensity of 2 mA for 5 consecutive days.
Comput Methods Programs Biomed
July 2014
In this study, the virtual reality (VR) proprioception rehabilitation system was developed for stroke patients to use proprioception feedback in upper limb rehabilitation by blocking visual feedback. To evaluate its therapeutic effect, 10 stroke patients (onset>3 month) trained proprioception feedback rehabilitation for one week and visual feedback rehabilitation for another week in random order. Proprioception functions were checked before, a week after, and at the end of training.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2015
We investigated a virtual reality (VR) proprioceptive rehabilitation system that could manipulate the visual feedback of upper-limb during training and could do training by relying on proprioception feedback only. Virtual environments were designed in order to switch visual feedback on/off during upper-limb training. Two types of VR training tasks were designed for evaluating the effect of the proprioception focused training compared to the training with visual feedback.
View Article and Find Full Text PDFObjective: To develop and evaluate the psychometric properties of a modified Naturalistic Action Test (m-NAT) for Korean patients with impaired cognition. The NAT was originally designed to assess everyday action impairment associated with higher cortical dysfunction.
Methods: We developed the m-NAT by adapting the NAT for the Korean cultural background.
Background: Several experimental studies in stroke patients suggest that mirror therapy and various virtual reality programs facilitate motor rehabilitation. However, the underlying mechanisms for these therapeutic effects have not been previously described.
Objectives: We attempted to delineate the changes in corticospinal excitability when individuals were asked to exercise their upper extremity using a real mirror and virtual mirror.
Objective: To delineate the changes in corticospinal excitability when individuals are asked to exercise their hand using observation, motor imagery, voluntary exercise, and exercise with a mirror.
Method: The participants consisted of 30 healthy subjects and 30 stroke patients. In healthy subjects, the amplitudes and latencies of motor evoked potential (MEP) were obtained using seven conditions: (A) rest; (B) imagery; (C) observation and imagery of the hand activity of other individuals; (D) observation and imagery of own ipsilateral hand activity; (E) observation and imagery of the hand activity of another individual with a mirror; (F) observation and imagery of own symmetric ipsilateral hand activity (thumb abduction) with a mirror; and (G) observation and imagery of own asymmetric ipsilateral hand activity (little finger abduction) with a mirror.
Am J Phys Med Rehabil
September 2009
Objectives: We assessed the validity and reliability of a virtual environment technology (VET)-based cognitive assessment program that was developed as a measurement tool of cognitive abilities in patients after a stroke.
Design: Twenty participants diagnosed with stroke caused by unilateral brain lesions were enrolled to assess the VET program's validity and test-retest reliability. Participants underwent evaluation by paper-based neuropsychological tests including the Korean Mini-Mental Status Examination, the Korean-Wechsler Adult Intelligence Scale, the Motor Free Visual Perception Test, Rey-Kim Memory Test, and Kim's Frontal-Executive Neuropsychologic Test as well as the VET-based cognitive assessment.
Stroke and traumatic brain injury affect an increasing number of people, many of whom retain permanent damage in cognitive functions. Conventionally, cognitive function has been assessed by a paper-based neuropsychological evaluation. However these test environments differ substantially from everyday life.
View Article and Find Full Text PDF